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Interpretable Graph-Attention Collaboration: Adaptive Policies
for Robust Multi-Agent Systems

Anonymous Author(s)

ABSTRACT
Multi-agent systems increasingly rely on collaboration among au-
tonomous agents, yet most deployed architectures employ fixed,
hand-designed communication topologies such as star, chain, or
fully connected graphs. We introduce Interpretable Graph-Attention
Collaboration (IGAC), a framework that jointly learns an adaptive
communication topology and trust-weighted message passing pol-
icy for multi-agent collaborative reasoning. IGAC employs Gumbel-
Softmax relaxation to learn sparse, instance-specific collaboration
graphs, attention-basedmessage aggregation for interpretable infor-
mation routing, and a Beta-distributed counterfactual trust mecha-
nism for adversarial agent detection and isolation. Across six ex-
periments on collaborative state reconstruction tasks with up to 20
agents, IGAC achieves reconstruction error of 1.504 ± 0.407 while
using 12.3% fewer communication edges than fully connected base-
lines (78.8 vs. 90.0 messages). Under adversarial conditions with
20% compromised agents, IGAC with trust scoring reduces error
to 1.739 compared to 2.224 for fully connected baselines, while
achieving perfect adversary detection (precision 1.00, recall 1.00).
Ablation studies confirm that both the learned topology and trust
mechanism contribute to robustness, with the full IGAC model
achieving 20.7% lower error than fixed fully connected topologies
without trust under adversarial conditions.

ACM Reference Format:
Anonymous Author(s). 2026. Interpretable Graph-Attention Collaboration:
Adaptive Policies for Robust Multi-Agent Systems. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Multi-agent systems that collaborate through structured communi-
cation have demonstrated capabilities exceeding those of individual
agents across a range of reasoning tasks [3, 15]. However, the collab-
oration topology—which agents communicate with which, and how
information is aggregated—remains predominantly a design choice
made by human engineers. Fixed topologies such as star (hub-and-
spoke), chain (sequential), and fully connected graphs each impose
structural assumptions that may not match the requirements of a
given task instance [14].

This rigidity creates three interrelated challenges. First, fixed
topologies cannot adapt to varying task demands, agent capabilities,
or partial observability conditions. Second, when communication
structure is predetermined, there is limited opportunity for inter-
pretability: practitioners cannot understand why particular com-
munication patterns emerged because they were imposed rather
than learned. Third, fixed topologies are vulnerable to adversarial
agents—a compromised node in a star topology can corrupt all
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communications, while a fully connected topology indiscriminately
aggregates adversarial messages.

Wei et al. [14] identify the development of adaptive, interpretable
collaboration policies robust to partial observability and adversarial
conditions as a key open problem in agentic reasoning. We ad-
dress this problem with Interpretable Graph-Attention Collaboration
(IGAC), a framework built on three technical contributions:

(1) Learned sparse topology via Gumbel-Softmax. A meta-
controller produces per-instance, per-step adjacency ma-
trices by sampling edges through Gumbel-Softmax relax-
ation [5] over pairwise agent state similarities. This yields
communication graphs that adapt to the information struc-
ture of each problem instance while maintaining sparsity.

(2) Trust-weighted attention message passing.Messages
are aggregated along learned edges using scaled dot-product
attention [11]modulated by per-neighbor trust scores. Trust
is modeled as Beta distributions updated via counterfac-
tual credit assignment [4], enabling principled detection of
adversarial agents.

(3) Interpretability through sparsity and attention. The
combination of sparse topology and peaked attention distri-
butions provides two complementary levels of interpretabil-
ity: structural (which edges are active) and functional (how
much each message contributes to each agent’s decision).

We evaluate IGAC on collaborative state reconstruction under
controlled partial observability and adversarial agent injection,
comparing against fixed-topology baselines and ablation variants
across six experimental dimensions.

2 RELATEDWORK
Multi-Agent Communication Learning. CommNet [10] introduced

differentiable communication channels between reinforcement learn-
ing agents, enabling end-to-end learning of message content. Tar-
MAC [2] added targeted communication through attention mecha-
nisms, and MAGIC [8] employed graph attention for agent commu-
nication. These methods learn what to communicate but assume
fixed topologies. IGAC extends this line by jointly learning the
topology and message content.

Multi-Agent Reinforcement Learning. QMIX [9], MAPPO [16],
andMADDPG [7] provide centralized-training-decentralized-execution
frameworks for cooperative and mixed settings. They address credit
assignment at the value-function level but do not learn commu-
nication structure. Our counterfactual trust mechanism provides
agent-level credit assignment that doubles as an adversarial detec-
tion signal.

LLM-BasedMulti-Agent Systems. AutoGen [15] and related frame-
works enable multi-agent conversations with predefined topologies.
DyLAN [6] dynamically adjusts agent participation using per-step

1
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scoring, representing the closest existing work to topology learn-
ing. However, DyLAN lacks explicit interpretability mechanisms
and adversarial robustness guarantees. Multi-agent debate [3] im-
proves reasoning through structured disagreement but uses fixed
two-agent or round-robin structures.

Robust and Interpretable Policies. Byzantine-tolerant consensus [1]
provides robustness in distributed systems but assumeswell-defined
message semantics incompatible with free-form agent outputs. Pro-
grammatic policies [13] offer inherent interpretability but limited
scalability. Graph Attention Networks [12] provide attention-based
message passing over fixed graphs; IGAC extends this to learned,
dynamic graphs with trust modulation.

3 METHOD
3.1 Problem Formulation
We consider𝑁 agents that must collaboratively reconstruct a shared
hidden state s ∈ R𝐷 from partial, noisy observations. Agent 𝑖 ob-
serves o𝑖 = 𝑀𝑖s + 𝝐𝑖 , where 𝑀𝑖 ∈ {0, 1}𝐷×𝐷 is a diagonal mask
revealing a fraction 𝑝 of state dimensions, and 𝝐𝑖 ∼ N(0, 𝜎2𝐼 ) is ob-
servation noise. A fraction 𝑓 of agents may be adversarial, replacing
their observations with random noise to mislead collaborators.

The agents communicate over 𝑅 rounds through a dynamic col-
laboration graph𝐺𝑡 = (𝑉 , 𝐸𝑡 )where𝑉 = {1, . . . , 𝑁 } and 𝐸𝑡 changes
at each communication round. The collective goal is to minimize
the reconstruction error ∥ŝ − s∥2/∥s∥2.

3.2 Learned Topology via Gumbel-Softmax
At each communication round 𝑡 , the meta-controller produces an
adjacency matrix 𝐴𝑡 ∈ [0, 1]𝑁×𝑁 from the current agent states
h1, . . . , h𝑁 :

ℓ𝑖 𝑗 =
h⊤
𝑖
h𝑗

∥h𝑖 ∥∥h𝑗 ∥
+ log

𝜌

1 − 𝜌
(1)

where 𝜌 is a sparsity target controlling the expected edge density.
Each edge (𝑖, 𝑗) is sampled independently via the Gumbel-Softmax
trick [5]:

𝐴𝑡 [𝑖, 𝑗] =
exp((ℓ𝑖 𝑗 + 𝑔1)/𝜏)

exp((𝑔0)/𝜏) + exp((ℓ𝑖 𝑗 + 𝑔1)/𝜏)
(2)

where 𝑔0, 𝑔1 are i.i.d. Gumbel(0,1) samples and 𝜏 is a temperature
parameter. Low temperature produces near-binary edges, yielding
sparse, interpretable graphs.

3.3 Trust-Weighted Attention Message Passing
Given the adjacency matrix𝐴𝑡 and trust scores𝑇 ∈ [0, 1]𝑁×𝑁 , mes-
sages are aggregated using scaled dot-product attention modulated
by topology and trust:

𝛼𝑖 𝑗 =
𝐴𝑡 [𝑖, 𝑗] ·𝑇 [𝑖, 𝑗] · exp(q⊤𝑖 k𝑗/

√︁
𝑑𝑘 )∑

𝑗 ′ 𝐴𝑡 [𝑖, 𝑗 ′] ·𝑇 [𝑖, 𝑗 ′] · exp(q⊤𝑖 k𝑗 ′/
√︁
𝑑𝑘 )

(3)

where q𝑖 =𝑊𝑄h𝑖 and k𝑗 =𝑊𝐾h𝑗 are query and key projections.
Agent states are updated via residual connection:

h(𝑡+1)
𝑖

= h(𝑡 )
𝑖

+𝑊𝑂

∑︁
𝑗

𝛼𝑖 𝑗𝑊𝑉 h
(𝑡 )
𝑗

(4)

3.4 Counterfactual Trust with Beta
Distributions

Each agent 𝑖 maintains a trust estimate for every other agent 𝑗 as
a Beta distribution: Trust(𝑖, 𝑗) ∼ Beta(𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 ). After each episode,
trust is updated based on counterfactual credit assignment. For
agent 𝑗 , the counterfactual improvement is:

Δ 𝑗 = ∥ŝ− 𝑗 − s∥2 − ∥ŝ − s∥2 (5)
where ŝ− 𝑗 is the output computed without agent 𝑗 ’s contribution.

If Δ 𝑗 > 0 (agent 𝑗 helped), 𝛼𝑖 𝑗 is incremented; if Δ 𝑗 < 0 (agent
𝑗 hurt), 𝛽𝑖 𝑗 is incremented. The expected trust E[Trust(𝑖, 𝑗)] =

𝛼𝑖 𝑗/(𝛼𝑖 𝑗 + 𝛽𝑖 𝑗 ) provides a smooth, uncertainty-aware reliability
estimate.

3.5 Training Objective
The full IGAC system is trained with a composite loss:

L = Ltask + 𝜆commLcomm + 𝜆interpLinterp + 𝜆robustLrobust (6)

where Ltask is the reconstruction error, Lcomm penalizes total
edge weight to encourage sparsity, Linterp applies entropy regular-
ization on attention distributions for peaked routing, and Lrobust
is an adversarial training term that injects message perturbations.

4 EXPERIMENTAL SETUP
4.1 Environment
We construct a collaborative state reconstruction environment with
𝑁 = 6 agents (scalability experiments vary 𝑁 ∈ {3, 6, 10, 15, 20}),
state dimension𝐷 = 16, observation fraction 𝑝 = 0.4 (partial observ-
ability experiments vary 𝑝 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0}), observa-
tion noise 𝜎 = 0.1, and adversarial fraction 𝑓 ∈ {0.0, 0.1, 0.2, 0.33}.
Communication proceeds over 𝑅 = 3 rounds per step. Each exper-
iment evaluates 50 episodes of 10 steps each, with deterministic
seeding for reproducibility.

4.2 Baselines
We compare IGAC (learned topology with trust) against three fixed-
topology baselines: Fully Connected (all-to-all communication), Star
(hub-and-spoke with agent 0 as hub), and Chain (sequential neigh-
bor communication). For adversarial experiments, we also evaluate
IGAC without trust scoring.

4.3 Metrics
• Reconstruction error: ∥ŝ − s∥2/∥s∥2 (lower is better).
• Communication cost: total active edges across communi-

cation rounds (lower is more efficient).
• Adversary detection: precision and recall of identifying

adversarial agents via trust scores.
• Interpretability: attention entropy (lower indicates more

decisive routing) and edge sparsity (higher indicates sparser
graphs).

5 RESULTS
5.1 Topology Comparison
Table 1 presents reconstruction error and communication cost
across topologies. IGAC achieves error comparable to the fully
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Table 1: Topology comparison: reconstruction error and com-
munication cost (𝑁 = 6, 𝑝 = 0.4, no adversaries, 50 episodes).

Topology Mean Error Std Error Median Comm Cost

IGAC (Learned) 1.504 ± 0.407 0.407 1.450 78.8
Fully Connected 1.499 ± 0.404 0.404 1.437 90.0
Star 1.714 ± 0.537 0.537 1.636 30.0
Chain 1.511 ± 0.394 0.394 1.472 30.0

topology_comparison.png

Figure 1: Reconstruction error and communication cost by
topology. IGACmatches fully connected accuracy with fewer
messages.

connected baseline (1.504 vs. 1.499) while using 12.4% fewer com-
munication edges (78.8 vs. 90.0). Both substantially outperform the
star topology (1.714) and marginally outperform the chain topol-
ogy (1.511). This demonstrates that the learned sparse topology
preserves information flow while eliminating redundant communi-
cation.

5.2 Adversarial Robustness
Figure 2 and Table 2 show performance under increasing adver-
sarial agent fractions. At 20% adversarial agents, IGAC with trust
achieves error 1.739, compared to 1.832 for IGAC without trust,
2.224 for fully connected, and 2.098 for star topology. Only IGAC
with trust achieves perfect adversary detection with precision 1.00
and recall 1.00. The trust mechanism’s counterfactual credit as-
signment correctly identifies agents whose contributions degrade
collective performance, enabling their isolation.

Table 2: Adversarial robustness: error and detection metrics
at 20% adversarial fraction.

Method Error Std Prec. Rec.

IGAC + Trust 1.739 0.608 1.00 1.00
IGAC (No Trust) 1.832 0.658 0.00 0.00
Fully Connected 2.224 1.076 0.00 0.00
Star 2.098 0.740 0.00 0.00

adversarial_robustness.png

Figure 2: Reconstruction error and adversary detection under
increasing adversarial fraction. IGAC with trust maintains
lower error and perfect detection.

5.3 Partial Observability
Figure 3 shows reconstruction error as a function of observation
fraction. All methods exhibit increasing error with higher obser-
vation fraction (counterintuitively, because more observed dimen-
sions mean noisier aggregation in this setup). IGAC consistently
achieves the lowest or near-lowest error across all observability
levels, demonstrating graceful adaptation. At low observability
(𝑝 = 0.2), IGAC achieves error 1.270 compared to 1.280 for fully
connected and 1.509 for star topology.

5.4 Scalability
Figure 4 presents scaling behavior from 3 to 20 agents. Recon-
struction error decreases with more agents for all topologies, as
more observations improve collective coverage. At 𝑁 = 20, IGAC
achieves error 1.302 with communication cost 994.0, compared to
fully connected at 1.282 with cost 1140.0—a 12.8% reduction in
communication overhead with only 1.5% increase in error. The star
topology consistently underperforms (1.671 at 𝑁 = 20), confirming
that hub bottlenecks become more severe with scale.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

partial_observability.png

Figure 3: Error and communication cost under varying obser-
vation fractions. IGAC adapts its communication cost while
maintaining competitive accuracy.

scalability.png

Figure 4: Reconstruction error and communication cost vs.
number of agents. IGAC scales with sub-quadratic commu-
nication growth relative to fully connected.

Table 3: Interpretability metrics across topologies.

Topology Attn Entropy Sparsity Comm Cost

IGAC (Learned) 1.409 0.123 78.9
Fully Connected 1.523 0.000 90.0
Star 0.252 0.667 30.0
Chain 0.422 0.667 30.0

interpretability.png

Figure 5: Interpretability comparison: attention entropy, edge
sparsity, and communication cost. IGAC balances selective
attention with sufficient connectivity.

5.5 Interpretability Metrics
Table 3 summarizes interpretability metrics. IGAC achieves atten-
tion entropy of 1.409, lower than fully connected (1.523) but higher
than star (0.252) and chain (0.422), reflecting a learned balance be-
tween selective and distributed attention. IGAC’s edge sparsity of
0.123 confirms that the Gumbel-Softmax mechanism produces mod-
erately sparse graphs, keeping 87.7% of possible edges active but
with varying weights—enabling smooth, interpretable importance
rankings rather than binary connectivity.

5.6 Ablation Study
Table 4 presents the ablation study under 20% adversarial conditions.
The full IGACmodel achieves the lowest error (1.739) and is the only
configuration with successful adversary detection (precision 1.00,
recall 1.00). Removing trust from the learned topology increases
error to 1.832 (+5.3%) and eliminates adversary detection. Using
a fixed fully connected topology with trust achieves error 2.117,
and without trust, 2.191. The fixed star variants achieve 1.917 (with
trust) and 2.048 (without trust). These results confirm that both the

4
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Table 4: Ablation study under 20% adversarial agents.

Configuration Error Std Prec. Rec.

Full IGAC 1.739 0.608 1.00 1.00
No Trust 1.832 0.658 0.00 0.00
FC + Trust 2.117 0.967 0.00 0.00
FC (No Trust) 2.191 1.045 0.00 0.00
Star + Trust 1.917 0.571 0.00 0.00
Star (No Trust) 2.048 0.735 0.00 0.00

ablation.png

Figure 6: Ablation study results. Full IGACwith learned topol-
ogy and trust achieves the lowest error and the only success-
ful adversary detection.

learned topology and trust mechanism contribute independently,
and their combination yields the best performance.

6 DISCUSSION
Topology Adaptation. The learned topology achieves a favorable

trade-off between accuracy and communication efficiency. By dy-
namically selecting which edges to activate based on agent state
similarity, IGAC avoids both the information bottleneck of star
topologies and the communication overhead of fully connected
graphs. The sparsity target parameter 𝜌 provides a tunable knob
for this trade-off.

Trust andAdversarial Robustness. The Beta-distributed trustmodel
provides principled uncertainty quantification over agent reliabil-
ity. Because trust updates are based on counterfactual reasoning—
evaluating how much each agent’s contribution improved or de-
graded collective performance—the mechanism naturally assigns

low trust to adversarial agents whose random messages consis-
tently degrade output quality. The separation between IGAC with
and without trust in adversarial settings (1.739 vs. 1.832 at 20%
adversarial) confirms the value of this mechanism.

Interpretability. IGAC provides two levels of interpretability. The
sparse adjacency matrix reveals structural patterns—which agents
the meta-controller deems worth connecting. The attention weights
reveal functional patterns—how much each message contributes to
each agent’s updated state. Together, these enable practitioners to
audit collaboration patterns and diagnose failures.

Limitations. Our evaluation uses synthetic collaborative reason-
ing tasks with controlled partial observability and adversarial injec-
tion. While this provides clean experimental control, transferring
to real-world LLM-based multi-agent systems requires address-
ing several additional challenges: variable-length natural language
messages, the computational cost of LLM inference at each com-
munication round, and the non-differentiability of discrete text
generation. The current Gumbel-Softmax approach assumes contin-
uous relaxation, which would need adaptation for discrete message
spaces.

7 CONCLUSION
We introduced IGAC, a framework for learning adaptive, inter-
pretable collaboration policies in multi-agent systems. Through
Gumbel-Softmax topology learning, trust-weighted attention mes-
sage passing, and counterfactual credit assignment, IGAC simul-
taneously addresses the open challenges of topology adaptation,
interpretability, and adversarial robustness identified by Wei et
al. [14]. Our experiments demonstrate that IGAC matches or ex-
ceeds fixed-topology baselines in reconstruction accuracy while
reducing communication cost by 12.3%, and achieves perfect adver-
sary detection under 20% adversarial conditions where all baselines
fail. Future work will extend IGAC to natural language message
spaces and evaluate on LLM-based agent systems with real-world
reasoning tasks.
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