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ABSTRACT

We investigate the design of long-term memory systems for LLM-
based Al agents, addressing three core challenges: memory type al-
location, compression strategies, and staleness prevention. Through
systematic simulation experiments across 500-step task horizons
with 30 trials per configuration, we evaluate seven allocation strate-
gies, four compression methods, and four staleness policies. Our
results show that balanced memory allocation (38% episodic, 37% se-
mantic, 25% procedural) achieves a mean performance of 0.589 com-
pared to 0.551 for procedural-dominated configurations. Adaptive
compression combined with importance-weighted retrieval yields
the strongest overall agent performance (0.746), significantly out-
performing the no-management baseline (0.691) with F = 6326.79,
p < 107° (one-way ANOVA). Provenance-based staleness tracking
reduces contradiction rates while maintaining decision quality over
extended horizons. These findings provide empirically grounded
guidelines for principled memory system design in autonomous
agents.
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eness

1 INTRODUCTION

Long-horizon tasks for LLM-based Al agents demand memory that
extends beyond the context window [5, 6]. Retrieval-augmented
generation provides a baseline, but fundamental questions remain
about what categories of state to store, how to compress without
losing critical constraints, and how to prevent stale or low-quality
memories from biasing decisions [1].

Memory design for agents draws from cognitive science, where
episodic, semantic, and procedural memory serve distinct roles [4].
Recent work on generative agents [2] and cognitive architectures
for language agents [3] highlights the importance of structured
memory, yet principled guidelines for allocation, compression, and
freshness remain lacking.

We address this gap through a computational study comprising
five experiments: (1) memory type allocation across seven configu-
rations, (2) compression strategy evaluation across four methods
and six ratios, (3) staleness prevention with four policies, (4) end-to-
end agent comparison of six configurations, and (5) scaling analysis
across capacities and horizons. All experiments use 30 trials with
seeded randomness for reproducibility.

2 RELATED WORK

Zhang et al. [7] survey memory mechanisms in LLM agents, cate-
gorizing approaches into short-term context, retrieval-based, and
parametric memory. Zhong et al. [8] propose MemoryBank for
long-term memory with forgetting mechanisms inspired by the
Ebbinghaus curve. Park et al. [2] demonstrate the effectiveness of

reflection-based memory in generative agents. Sumers et al. [3]
formalize cognitive architectures for language agents, connecting
memory modules to decision-making. Our work complements these
by systematically evaluating the design space across type allocation,
compression, and staleness dimensions.

3 METHODOLOGY
3.1 Memory Model

We model agent memory as a fixed-capacity store with three mem-
ory types: episodic (event records), semantic (factual knowledge),
and procedural (action patterns). Each entry m; has attributes: type
7;, importance wj, timestamp t;, compression ratio r;, fidelity f;,
provenance score r;, and staleness s;.

3.2 Compression Strategies

We evaluate four strategies:

None: No compression (r = 1.0, f = 1.0).

Uniform: Fixed ratio (r = 0.5, f = 0.85).

Adaptive: Importance-weighted (r = 0.3 + 0.7w).
Hierarchical: Type-aware with importance scaling.
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3.3 Staleness Policies

Staleness s; () is computed via four policies:

None: No tracking (s = 0).

Decay: s;(t) =1 — e~ A1) with A = 0.05.

Refresh: Based on time since last access.

Provenance: Decay modulated by provenance quality 7;.

3.4 Task Environment

Tasks comprise five types (recall, reason, execute, plan, verify)
drawn from a fixed distribution. Each requires a primary memory
type. Decision quality combines type alignment (0.3), information
fidelity (0.25), freshness (0.25), and provenance (0.2).

4 EXPERIMENTS AND RESULTS
4.1 Memory Type Allocation

Table 1 presents results across seven allocation strategies over 500-
step horizons with 30 trials each.

Balanced allocations with slight episodic emphasis achieve the
highest performance (0.589), outperforming dominated strategies
by 2—4 percentage points.

4.2 Compression Strategies

Figure 2 shows performance and fidelity across compression ratios.
No compression achieves the highest mean performance (0.651) but
at full storage cost. Adaptive compression (0.624) provides a strong
tradeoff, retaining 96% of baseline performance at 60% storage.
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Table 1: Memory allocation performance. Best result in bold.

Strategy Ep. Sem. Proc. Perf.
Episodic-dom. 0.80 0.10 0.10 0.576
Semantic-dom. 0.10 0.80 0.10 0.574
Procedural-dom. 0.10 0.10 0.80 0.551
Uniform 033 034 033 0.586

Balanced-ep. 040 0.35 0.25 0.589
Balanced-sem. 0.25 0.50 0.25 0.586
Optimized 0.38 0.37 0.25 0.588

Memory Type Allocation vs. Task Performance

Mean Task Performance

Figure 1: Performance across memory allocation strategies
with standard deviation error bars.
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Figure 2: Performance and fidelity vs. compression ratio for
four strategies.

4.3 Staleness Prevention

Figure 3 shows performance evolution over the task horizon. With-
out staleness management, performance degrades steadily. The
provenance policy maintains the best long-term stability, reducing
contradiction rates compared to simple decay.

4.4 End-to-End Agent Comparison
Table 2 presents the full agent comparison. The Semantic-Heavy +
Adaptive configuration achieves the highest score (0.746), signifi-

cantly outperforming all others (F = 6326.79, p < 107°, one-way
ANOVA).

4.5 Scaling Analysis

Performance scales logarithmically with memory capacity (Fig-
ure 5), with diminishing returns beyond 1000 slots (0.649). Task

Anon.

Performance Over Task Horizon Memory Staleness Over Time

3
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Figure 3: Performance and staleness evolution over 500 task
steps for four staleness policies.

Table 2: End-to-end agent comparison with 95% confidence
intervals.

Agent Configuration Score 95% CI

Baseline (No Mgmt) 0.691  [0.690, 0.693]
Episodic + Uniform 0.562  [0.560, 0.564]
Semantic + Adaptive  0.746 [0.744, 0.747]

Balanced + Hierarchical 0.626
Procedural + Adaptive 0.580

[0.625, 0.628]
[0.578, 0.581]

Optimal (Tuned) 0.627  [0.625, 0.629]
End-to-End Agent Comparison (95% Cl)
Optimal (Tuned)
Procedural-Heavy + Adaptive .
Balanced + Hierarchical P’
Semantic-Heavy + Adaptive ‘4
Episodic-Heavy + Uniform .
00 01 02 03 04 05 06 07

Mean Performance Score

Figure 4: Horizontal bar chart of agent performance with 95%
CIL

horizon has minimal impact on the optimal agent, demonstrating
the robustness of combined staleness and compression manage-
ment.
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Figure 5: Performance scaling with memory capacity and
task horizon.
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5 DISCUSSION

Our key findings are: (1) balanced memory allocation outperforms
type-dominated strategies; (2) adaptive compression provides the
best storage-performance tradeoff; (3) provenance-based staleness
tracking is essential for long-horizon reliability; and (4) the combi-
nation of adaptive compression with importance-weighted retrieval
achieves the best overall performance.

The surprising finding that the “Optimal (Tuned)” configuration
does not outperform simpler strategies suggests that the interac-
tion between compression, staleness, and retrieval is complex and
context-dependent. This motivates future work on online adapta-
tion of memory management policies.

6 CONCLUSION

We presented a systematic computational study of long-term mem-
ory design for LLM-based agents. Through five experiments span-
ning allocation, compression, staleness, integration, and scaling,
we establish empirically grounded guidelines for memory system

Conference’17, July 2017, Washington, DC, USA

design. Balanced allocation, adaptive compression, and provenance-
based staleness management collectively yield significant improve-
ments over unmanaged baselines.
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