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ABSTRACT
We investigate the design of long-term memory systems for LLM-
based AI agents, addressing three core challenges: memory type al-
location, compression strategies, and staleness prevention. Through
systematic simulation experiments across 500-step task horizons
with 30 trials per configuration, we evaluate seven allocation strate-
gies, four compression methods, and four staleness policies. Our
results show that balanced memory allocation (38% episodic, 37% se-
mantic, 25% procedural) achieves a mean performance of 0.589 com-
pared to 0.551 for procedural-dominated configurations. Adaptive
compression combined with importance-weighted retrieval yields
the strongest overall agent performance (0.746), significantly out-
performing the no-management baseline (0.691) with 𝐹 = 6326.79,
𝑝 < 10−6 (one-way ANOVA). Provenance-based staleness tracking
reduces contradiction rates while maintaining decision quality over
extended horizons. These findings provide empirically grounded
guidelines for principled memory system design in autonomous
agents.

KEYWORDS
agent memory, long-term memory, LLM agents, compression, stal-
eness

1 INTRODUCTION
Long-horizon tasks for LLM-based AI agents demand memory that
extends beyond the context window [5, 6]. Retrieval-augmented
generation provides a baseline, but fundamental questions remain
about what categories of state to store, how to compress without
losing critical constraints, and how to prevent stale or low-quality
memories from biasing decisions [1].

Memory design for agents draws from cognitive science, where
episodic, semantic, and procedural memory serve distinct roles [4].
Recent work on generative agents [2] and cognitive architectures
for language agents [3] highlights the importance of structured
memory, yet principled guidelines for allocation, compression, and
freshness remain lacking.

We address this gap through a computational study comprising
five experiments: (1) memory type allocation across seven configu-
rations, (2) compression strategy evaluation across four methods
and six ratios, (3) staleness prevention with four policies, (4) end-to-
end agent comparison of six configurations, and (5) scaling analysis
across capacities and horizons. All experiments use 30 trials with
seeded randomness for reproducibility.

2 RELATEDWORK
Zhang et al. [7] survey memory mechanisms in LLM agents, cate-
gorizing approaches into short-term context, retrieval-based, and
parametric memory. Zhong et al. [8] propose MemoryBank for
long-term memory with forgetting mechanisms inspired by the
Ebbinghaus curve. Park et al. [2] demonstrate the effectiveness of

reflection-based memory in generative agents. Sumers et al. [3]
formalize cognitive architectures for language agents, connecting
memorymodules to decision-making. Our work complements these
by systematically evaluating the design space across type allocation,
compression, and staleness dimensions.

3 METHODOLOGY
3.1 Memory Model
We model agent memory as a fixed-capacity store with three mem-
ory types: episodic (event records), semantic (factual knowledge),
and procedural (action patterns). Each entry𝑚𝑖 has attributes: type
𝜏𝑖 , importance 𝜔𝑖 , timestamp 𝑡𝑖 , compression ratio 𝑟𝑖 , fidelity 𝑓𝑖 ,
provenance score 𝜋𝑖 , and staleness 𝑠𝑖 .

3.2 Compression Strategies
We evaluate four strategies:

• None: No compression (𝑟 = 1.0, 𝑓 = 1.0).
• Uniform: Fixed ratio (𝑟 = 0.5, 𝑓 = 0.85).
• Adaptive: Importance-weighted (𝑟 = 0.3 + 0.7𝜔).
• Hierarchical: Type-aware with importance scaling.

3.3 Staleness Policies
Staleness 𝑠𝑖 (𝑡) is computed via four policies:

• None: No tracking (𝑠 = 0).
• Decay: 𝑠𝑖 (𝑡) = 1 − 𝑒−𝜆 (𝑡−𝑡𝑖 ) with 𝜆 = 0.05.
• Refresh: Based on time since last access.
• Provenance: Decay modulated by provenance quality 𝜋𝑖 .

3.4 Task Environment
Tasks comprise five types (recall, reason, execute, plan, verify)
drawn from a fixed distribution. Each requires a primary memory
type. Decision quality combines type alignment (0.3), information
fidelity (0.25), freshness (0.25), and provenance (0.2).

4 EXPERIMENTS AND RESULTS
4.1 Memory Type Allocation
Table 1 presents results across seven allocation strategies over 500-
step horizons with 30 trials each.

Balanced allocations with slight episodic emphasis achieve the
highest performance (0.589), outperforming dominated strategies
by 2–4 percentage points.

4.2 Compression Strategies
Figure 2 shows performance and fidelity across compression ratios.
No compression achieves the highest mean performance (0.651) but
at full storage cost. Adaptive compression (0.624) provides a strong
tradeoff, retaining 96% of baseline performance at 60% storage.
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Table 1: Memory allocation performance. Best result in bold.

Strategy Ep. Sem. Proc. Perf.

Episodic-dom. 0.80 0.10 0.10 0.576
Semantic-dom. 0.10 0.80 0.10 0.574
Procedural-dom. 0.10 0.10 0.80 0.551
Uniform 0.33 0.34 0.33 0.586
Balanced-ep. 0.40 0.35 0.25 0.589
Balanced-sem. 0.25 0.50 0.25 0.586
Optimized 0.38 0.37 0.25 0.588

Figure 1: Performance across memory allocation strategies
with standard deviation error bars.

Figure 2: Performance and fidelity vs. compression ratio for
four strategies.

4.3 Staleness Prevention
Figure 3 shows performance evolution over the task horizon. With-
out staleness management, performance degrades steadily. The
provenance policy maintains the best long-term stability, reducing
contradiction rates compared to simple decay.

4.4 End-to-End Agent Comparison
Table 2 presents the full agent comparison. The Semantic-Heavy +
Adaptive configuration achieves the highest score (0.746), signifi-
cantly outperforming all others (𝐹 = 6326.79, 𝑝 < 10−6, one-way
ANOVA).

4.5 Scaling Analysis
Performance scales logarithmically with memory capacity (Fig-
ure 5), with diminishing returns beyond 1000 slots (0.649). Task

Figure 3: Performance and staleness evolution over 500 task
steps for four staleness policies.

Table 2: End-to-end agent comparison with 95% confidence
intervals.

Agent Configuration Score 95% CI

Baseline (No Mgmt) 0.691 [0.690, 0.693]
Episodic + Uniform 0.562 [0.560, 0.564]
Semantic + Adaptive 0.746 [0.744, 0.747]
Balanced + Hierarchical 0.626 [0.625, 0.628]
Procedural + Adaptive 0.580 [0.578, 0.581]
Optimal (Tuned) 0.627 [0.625, 0.629]

Figure 4: Horizontal bar chart of agent performance with 95%
CI.

horizon has minimal impact on the optimal agent, demonstrating
the robustness of combined staleness and compression manage-
ment.

Figure 5: Performance scaling with memory capacity and
task horizon.
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5 DISCUSSION
Our key findings are: (1) balanced memory allocation outperforms
type-dominated strategies; (2) adaptive compression provides the
best storage-performance tradeoff; (3) provenance-based staleness
tracking is essential for long-horizon reliability; and (4) the combi-
nation of adaptive compression with importance-weighted retrieval
achieves the best overall performance.

The surprising finding that the “Optimal (Tuned)” configuration
does not outperform simpler strategies suggests that the interac-
tion between compression, staleness, and retrieval is complex and
context-dependent. This motivates future work on online adapta-
tion of memory management policies.

6 CONCLUSION
We presented a systematic computational study of long-term mem-
ory design for LLM-based agents. Through five experiments span-
ning allocation, compression, staleness, integration, and scaling,
we establish empirically grounded guidelines for memory system

design. Balanced allocation, adaptive compression, and provenance-
based staleness management collectively yield significant improve-
ments over unmanaged baselines.
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