Architecting Long-Term Memory
for Autonomous Agents
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EXPERIMENT CONTEXT: Systematic simulation Design Principles from
across 500-step task horizons. Computational Study



THE LIMITS OF CONTEXT WINDOWS AND RAG

CURRENT STATE: THE CONTEXT TRAP

Finite Context
Window

Unstructured
RAG Retrieval

Context Window: Finite capacity. Useful for short-term recall

but fails fo maintain state over extended interactions.

» RAG: Provides a baseline but lacks structure. Treats all
refrieved chunks as equal, leading to context clutter.
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TARGET STATE: PARAMETRIC MEMORY

IMPORTANCE

FRESHNESS >
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s rucfured Paramefric
Memory Bank

Parametric Memory: Agents need a structured, fixed-capacity
store that mimics cognitive distinctness.
e The Goal: Move from ‘retrieving text' fo ‘managing state’
across Type, Importance, and Freshness. [ Tecweeo s mooecone

pitoll —— —
A | 5trA




THREE ENGINEERING CHALLENGES FOR MEMORY SYSTEMS
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The ‘How’': Reducing storage costs The ‘When’': Policies to prevent data
. without losing information fidelity (f). drift and hallucinations over time.

The ‘What’: Defining the optimal mix of
Episodic, Semantic, and Procedural data.

OBJECTIVE: MAXIMIZE DECISION QUALITY ACROSS 500-STEP HORIZONS. (G | Somemen e ocmove




THE SIMULATION ENVIRONMENT

: TASK
GENERATION

5 Task Types

(Recall, Reason,

Ezxecute, Plan, Verify) |
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Task Horizon: 500 steps per trial

Volume: 30 trials per config (seeded randomness)

Evaluation Metric: Type Alignment (0.3) + Fidelity (0.25) + Freshness (0.25) + Provenance (0.2)
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Categorizing State for Optimal Retrieval
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i EPISODIC SEMANTIC PROCEDURAL N
Event records and specific Factual knowledge and Action patterns and
1nteraction history. world truths. workf lows.
“What happened?” "What 1s true?” | “How do I do this?”
e
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~=KEY QUESTION:

optimal ratio of these three

Given a fixed capacity, what is the

types?
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'BALANCED ALLOCATION OUTPERFORMS SPECIALIZED STRATEGIES
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MEMORY TYPE ALLOCATION VS. TASK PERFORMANCE _} /; \?
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Pillar II: Compression Strategies
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Maximizing Storage Density Without Losing the Gist

T I]

NONE

Full fidelity.
=108 =ir0:
High Cost.

UNIFORM

Blunt instrument.

Fixed ratio.
I=0H8I=(:85!

ADAPTIVE (Recommended)

HIERARCHICAL

Higher importance
less compression.

r; = 0.3+ 0.7w;

Importance-weighted.

Type-aware scaling.

=

:| Goal: Find the Efficiency Frontier where performance is high but storage cost is low. |:




== Swiss Engineering Blueprint

ADAPTIVE COMPRESSION RETAINS 96% PERFORMANCE AT 60% COST
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PERFORMANCE VS. COMPRESSION RATIO
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Adaptive:
Stabilizes
performance even as
compression tightens.

None
- Uniform
—— Adaptive
—&— Hierarchical
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INSIGHT

While ‘None' has the
highest absolute
performance, it is
inefficient.

Adaptive compression
offers the optimal trade-
off based on memory
importance (w).
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== Swiss Engineering Blueprint
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Pillar III: Preventing Staleness and Hallucination

The Problem: Information degrades.
0ld memories contradict new states.

Policies Tested:

Decay: Standard exponential math.
si(t) =1 — e At-t)

Refresh: Reset clock on access.

Provenance: Decay modulated by
source quality (7r;). High-trust
sources decay slower.

b
i
Provenance Boost:
Provenance Boost High-trust sources R
T decay slower e
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Standard Decay
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Time
Information Value Decay over Time
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PROVENANCE TRACKING STABILIZES LONG-HORIZON INTEGRITY

PERFORMANCE OVER TASK HORIZON
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THE DRIFT

Without management,
contradictions pile up.

Provenance reduces

this by prioritizing
high-quality sources
rather than just recent
ones.
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The Optimal Agent Configuration
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SEMANTIC-HEAVY + ADAPTIVE

Winning Configuration

0.746
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Integration of Semantic Allocation and Adaptive Compression yields highest reliability.
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| End-to-End Performance Comparison

End-to-End Agent Comparison (95% Cl) ok

Optimal (Tuned)

Procedural-Heavy + Adaptive

Balanced + Hierarchical { i —

Semantic-Heavy + Adaptive

Clear Winner (0.746)

Episodic-Heavy + Uniform

Baseline (No Memory Mgmt)
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Mean Performance Score

Note: Simple tuning failed to capture complex synergies found in the Semantic-Heavy approach.
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Swiss Engineering Blueprint

Scalability: Diminishing Returns Beyond 1000
Slots

Performance vs. Memory Capacity ® Pe rform ance sca les
0.65000 : '
Saturation Point (~0.649) logarithmically.
+H f‘*\/ * Simply adding storage
& [0.5400 capacity yields diminishing
: returns.
G 064850

* |ntelligent management >
Raw capacity.

0.64800

0.64750
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DESIGN PRINCIPLES FOR NEXT GEN AGE

PRIORITIZE BALANCE

Avoid type-dominated allocations.
Aim for a mix (approx 40/35/25) of

Episodic, Semantic, and Procedural.
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\ TRACK PROVENANCE

Use source quality, not just time,
to manage decay and prevent
contradictions.

Z COMPRESS ADAPTIVELY

Use importance weighting (r = 0.3 +
0.7w) to save 40% storage with
minimal loss.
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7‘ INTEGRATE SEMANTICS

For end-to-end performance, a
Semantic-Heavy approach combined

with Adaptive compression 1is superior.

FUTURE DIRECTION: ONLINE ADAPTATION
OF MEMORY MANAGEMENT POLICIES

N

SLIDE
12



