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Information-Theoretic Adaptive Memory Compression
for LLM-Based Agents

Anonymous Author(s)
ABSTRACT
Large language model (LLM) agents accumulate memory episodes—
observations, reasoning traces, and tool outputs—that must be re-
injected into a finite context window for future steps. Aggressive
compression reduces token cost and inference latency but risks
discarding task-critical information. We formalize this trade-off as
a rate-distortion optimization problem and propose Information-
Theoretic Adaptive Memory Compression (ITAMC), a frame-
work that allocates per-episode compression levels proportionally
to saliency scores under a global token budget. Through controlled
experiments on 100 synthetic memory episodes with 300 ground-
truth salient facts, we characterize the Pareto frontier between
compression ratio and information retention for three compres-
sion operators: extractive, abstractive, and latent. Our results re-
veal a concave frontier where moderate compression (𝑟 ≈ 0.4–0.6)
achieves 70–87% fact retention while reducing tokens by 40–60%.
Knee-point analysis identifies operator-specific optimal compres-
sion ratios: 𝑟∗ = 0.42 for extractive, 𝑟∗ = 0.59 for abstractive, and
𝑟∗ = 0.26 for latent compression. Saliency-guided adaptive allo-
cation yields its largest gains under extreme budget constraints
(10% budget: +10.2 percentage points for extractive compression),
while uniform compression is preferred at moderate budgets. We
release our simulation framework and all experimental code for
full reproducibility.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Natural
language processing.

KEYWORDS
LLM agents, memory compression, rate-distortion, Pareto frontier,
adaptive compression

1 INTRODUCTION
Large language model (LLM) agents operate by iteratively read-
ing context, reasoning, and acting [19]. As an agent progresses
through a task, it accumulates memory episodes—raw observations,
prior reasoning chains, tool outputs, and conversation history—
that inform subsequent decisions. Modern agents organize these
episodes in structured memory modules with episodic, semantic,
and procedural components [10, 15].

A fundamental bottleneck arises because LLMs process fixed-
length context windows. When accumulated memory exceeds this
window, the agent must either truncate or compress its memory
before re-injecting it. Compression reduces the token count (low-
ering API cost and inference latency) but risks losing task-critical
information [18]. The survey by Yang et al. [18] identifies this
compression–performance trade-off as an open problem, noting

that empirical systems such as LightMem demonstrate clear cost–
accuracy tensions but lack a principled framework for selecting
compression levels.

The challenge has multiple dimensions. First, different compres-
sion operators—extractive selection, abstractive summarization,
latent embedding—have distinct information-loss profiles. Second,
not all memory episodes are equally important: some contain task-
critical facts while others hold routine observations. Third, the
optimal compression level depends on the available token bud-
get, which varies across deployment scenarios (small local models
vs. large cloud-hosted models) and across execution phases (early
exploration vs. focused execution).

This paper makes the following contributions:

(1) We formalize memory compression for LLM agents as a
rate-distortion optimization problem (Section 2), con-
necting agent memory to classical information theory [2,
13].

(2) We characterize the Pareto frontier between compres-
sion ratio and information retention for three families of
compression operators—extractive, abstractive, and latent—
through controlled experiments with ground-truth salient
facts (Section 3).

(3) We propose ITAMC, a saliency-guided adaptive compres-
sion controller that allocates per-episode compression lev-
els under a global token budget, and demonstrate its effec-
tiveness under extreme budget constraints (Section 3).

(4) We identify operator-specific optimal compression ra-
tios via knee-point analysis and analyze retention stability
over long agent horizons (Section 3).

1.1 Related Work
Memory architectures for LLM agents. MemGPT [10] intro-
duced tiered memory with explicit paging between a main con-
text and external storage, drawing an analogy to operating-system
virtual memory. Reflexion [11] showed that storing and reflect-
ing on episodic memory improves multi-step reasoning through
self-correction. Recent surveys [3, 15] categorize agent memory
into episodic, semantic, and procedural components, each with dis-
tinct compression requirements. The agent memory management
problem—what to store, how to compress, and when to evict—
remains an active area of research [3].

Context and prompt compression. Several methods com-
press prompts or context windows for efficiency. Gist tokens [12]
learn fixed-length compressed representations of variable-length
contexts through distillation. AutoCompressor [4] trains language
models to recursively compress context segments into summary
vectors. Li et al. [8] survey prompt compression techniques includ-
ing lexical pruning, soft-prompt distillation, and retrieval-based
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selection. These methods primarily address static context compres-
sion rather than the dynamic, evolving memory of an agent that
must decide per-episode compression levels.

Compression and language modeling. Delétang et al. [5]
establish a formal connection between language modeling and data
compression, showing that prediction and lossless compression
are dual formulations of the same problem. This motivates our
use of information-theoretic concepts for memory compression:
if an LLM can predict the original from the compressed version,
the compression has preserved the relevant information. Work on
the compression–performance relationship [6] further supports the
thesis that compression quality is a proxy for model capability.

Resource-rational agents.The resource-rational analysis frame-
work [9, 16] models cognitive agents as optimizing a utility function
subject to computational cost constraints. Our rate-distortion for-
mulation adopts this perspective, treating the token budget as the re-
source constraint and weighted information retention as the utility.
Related work on computational efficiency for lifelong agents [14]
and memory breadth-fidelity trade-offs under context limits [7]
addresses complementary aspects of the same challenge.

Retrieval-augmented generation. RAG [17] decouples stor-
age from active context by selectively retrieving relevant document
chunks at inference time. Compression and retrieval are comple-
mentary mechanisms: compression reduces the per-chunk token
cost while retrieval reduces the number of chunks injected. Our
saliency-based allocation can be viewed as a soft version of retrieval
that modulates compression intensity rather than performing bi-
nary inclusion/exclusion decisions, and could be integrated with
RAG systems by varying the compression level of retrieved chunks
based on their relevance score.

2 METHODS
2.1 Problem Formulation
LetM = {𝑚1, . . . ,𝑚𝑇 } denote a set of 𝑇 memory episodes accu-
mulated by an LLM agent during task execution. Each episode𝑚𝑖

has token count |𝑚𝑖 | and contains a set of salient facts F𝑖 relevant
to downstream tasks. A compression operator C parameterized by
ratio 𝑟𝑖 ∈ (0, 1] produces a compressed episode 𝑚̂𝑖 = C𝑟𝑖 (𝑚𝑖 ) with
|𝑚̂𝑖 | ≈ 𝑟𝑖 · |𝑚𝑖 |.

We define information retention as the fraction of salient facts
preserved after compression:

𝜌𝑖 (𝑟𝑖 ) =
|F𝑖 ∩ F̂𝑖 |
|F𝑖 |

(1)

where F̂𝑖 denotes the facts recoverable from the compressed episode
𝑚̂𝑖 .

Thememory compression optimization problem is:

max
𝑟1,...,𝑟𝑇

𝑇∑︁
𝑖=1

𝑤𝑖 · 𝜌𝑖 (𝑟𝑖 ) s.t.
𝑇∑︁
𝑖=1
|C𝑟𝑖 (𝑚𝑖 ) | ≤ 𝐵 (2)

where 𝐵 is the total token budget and 𝑤𝑖 are task-dependent im-
portance weights derived from saliency scores. This formulation
connects directly to rate-distortion theory [2]: the budget 𝐵 con-
strains the rate (bits per source symbol, here tokens per memory),
and (1 − 𝜌𝑖 ) measures the distortion per episode.

The optimization in Eq. 2 is intractable in full generality because
(a) the retention function 𝜌𝑖 (𝑟𝑖 ) depends on the specific compres-
sion operator and episode content, and (b) evaluating downstream
task performance requires running the full agent pipeline. We in-
troduce two tractable relaxations: a lightweight saliency model for
computing𝑤𝑖 and a simulation-based characterization of 𝜌𝑖 (𝑟𝑖 ) for
different operator families.

2.2 Compression Operators
We study three families of compression operators that span the
spectrum of techniques used in practice.

Extractive compression selects a subset of sentences from
the original episode, preserving their exact wording. Sentences
are scored by a proxy for informativeness—the sum of word count
and numerical content density (digits per character)—and the top-
𝑘 sentences are retained in original order until the target token
count is reached. This models extractive summarization approaches
like LexRank or TextRank applied to agent memory. Information
retention is binary per-sentence: a salient fact is fully retained if
and only if its containing sentence is selected; partial retention is
not possible. This binary behavior produces sharp transitions in
the Pareto curve.

Abstractive compression simulates LLM-based summarization,
where the model reads the episode and generates a shorter version
in its own words. Since we require deterministic, API-free experi-
ments, we model the retention of each salient fact independently
using a logistic function of the target ratio:

𝑃 (retain fact | 𝑟𝑖 ) = 𝜎
(
𝑘 · (𝑟𝑖 − 𝜏)

)
(3)

where 𝜎 denotes the sigmoid function, 𝑘 = 8 controls the steep-
ness of the transition, and 𝜏 = 0.35 is the half-retention threshold
(the ratio at which retention probability equals 50%). This models
the empirical observation that LLM summarizers exhibit smooth,
ratio-dependent fact loss rather than the all-or-nothing behavior of
extractive methods.

Latent compression simulates embedding-based memory stor-
age where episodes are encoded as dense vectors and decoded back
to text for use by the agent. We model per-fact retention probability
using a Beta distribution:

𝑃 (retain fact | 𝑟𝑖 ) ∼ Beta
(
𝑟0.6
𝑖 · 𝜅, (1 − 𝑟

0.6
𝑖 ) · 𝜅

)
(4)

where the sub-linear exponent (0.6) models the hypothesis that
dense embeddings capture distributional semantics efficiently, and
the concentration parameter𝜅 = 12 controls the variance of per-fact
retention. This produces smoother degradation than both extractive
and abstractive operators, consistent with the behavior of varia-
tional autoencoders and information bottleneck methods [1, 13].

2.3 Saliency Scoring
Given a downstream task query 𝑞, we compute per-episode saliency
scores that combine two complementary signals—relevance and
recency:

𝑠𝑖 = 0.6 · |tokens(𝑞) ∩ tokens(𝑚𝑖 ) |
|tokens(𝑞) |︸                            ︷︷                            ︸

lexical relevance

+0.4 · 𝑒−𝜆 (𝑇−𝑡𝑖 )︸     ︷︷     ︸
recency bias

(5)

2
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Algorithm 1 ITAMC: Adaptive Compression Allocation

Require: Episodes {𝑚𝑖 }𝑇𝑖=1, saliency scores {𝑠𝑖 }, budget 𝐵
Ensure: Compression ratios {𝑟𝑖 }𝑇𝑖=1
1: 𝑠𝑖 ← max(𝑠𝑖 , 𝜖) for all 𝑖 ⊲ avoid division by zero
2: 𝑑𝑖 ← 𝑠𝑖 · |𝑚𝑖 | for all 𝑖 ⊲ desired tokens per episode
3: 𝛼 ← 𝐵 /∑𝑖 𝑑𝑖 ⊲ global scaling factor
4: 𝑟𝑖 ← clip(𝑠𝑖 · 𝛼, 𝑟min, 𝑟max) for all 𝑖
5: for 𝑘 = 1 to 𝐾max do
6: 𝐵̂ ← ∑

𝑖 𝑟𝑖 · |𝑚𝑖 | ⊲ projected token usage
7: if 𝐵̂ ≤ (1 + 𝛿) · 𝐵 then
8: break ⊲ budget satisfied
9: end if
10: 𝛾 ← 𝐵̂/𝐵 ⊲ overshoot factor
11: for all 𝑖 where 𝑟𝑖 > 𝑟min do
12: 𝑟𝑖 ← clip(𝑟𝑖/𝛾, 𝑟min, 𝑟max)
13: end for
14: end for
15: return {𝑟𝑖 }𝑇𝑖=1

where 𝑡𝑖 is the episode timestamp, 𝑇 is the latest timestamp, and
𝜆 = 0.02 is the decay rate. Scores are normalized to [0, 1] by dividing
by the maximum score. In production systems, the lexical overlap
component would be replaced by embedding-based retrieval scores
(e.g., cosine similarity from a bi-encoder), but our formulation cap-
tures the essential structure: saliency is a function of both content
relevance and temporal recency.

2.4 Adaptive Compression Controller (ITAMC)
ITAMC solves the budget-constrained allocation problem in Eq. 2
by assigning compression ratios proportionally to saliency scores.
The procedure, detailed in Algorithm 1, operates in two phases:

Phase 1: Initial allocation. Each episode receives a desired token
allocation proportional to 𝑠𝑖 · |𝑚𝑖 |, which is then normalized to fit
the budget. This ensures that high-saliency episodes receive ratios
closer to 𝑟max = 1.0 (minimal compression), while low-saliency
episodes receive ratios approaching 𝑟min = 0.05.

Phase 2: Iterative projection.Because clipping ratios to [𝑟min, 𝑟max]
may violate the budget constraint, we iteratively rescale non-floor
ratios until the projected token total fits within 𝐵. Convergence
typically occurs within 5–10 iterations.

The computational overhead of ITAMC is negligible: comput-
ing saliency scores requires 𝑂 (𝑇 · 𝑉 ) time where 𝑉 is the query
vocabulary size, and the allocation loop runs in 𝑂 (𝐾max ·𝑇 ) with
𝐾max ≤ 20. For 100 episodes, the entire allocation completes in
under 1 millisecond.

2.5 Experimental Setup
Synthetic benchmark.We generate 100 memory episodes, each
containing 3 salient facts (entity-action pairs drawn from vocabular-
ies of 20 entities and 15 actions) interleaved with 5 filler sentences,
yielding a corpus of 6,233 tokens and 300 ground-truth facts. The
synthetic design provides exact ground-truth for measuring retention,
which is impossible with natural-language agent traces where fact
boundaries are ambiguous and retention requires subjective evalu-
ation. We additionally define 8 downstream task queries spanning
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Figure 1: Pareto frontier between compression ratio and
mean salient-fact retention for three compression operators.
(a) Target compression ratio vs. retention. (b) Actual token
usage ratio vs. retention. All curves are concave: moderate
compression (𝑟 ≈ 0.4–0.6) achieves 60–87% retention while
saving 40–60% of tokens. The extractive operator shows the
sharpest transition; the latent operator degrades most gradu-
ally.

different information needs (error diagnostics, capacity planning,
security auditing, etc.) to evaluate saliency-dependent behavior.

Evaluation metrics.We report four metrics: (1) mean fact re-
tention 𝜌 = 1

𝑇

∑
𝑖 𝜌𝑖 , the primary quality measure; (2) compression

ratio (total compressed tokens / total raw tokens), measuring effi-
ciency; (3) fraction fully retained (episodes with 𝜌𝑖 = 1.0), measuring
per-episode reliability; and (4) retention delta (Δ𝜌), the difference
between adaptive and uniform retention at the same budget.

Experimental protocol.We conduct five experiments:
• Exp. 1: Pareto frontier sweep with 20 uniform compression

ratios per operator (Section 3.1).
• Exp. 2: Adaptive vs. uniform comparison across 10 budget

levels and 8 tasks (Section 3.3).
• Exp. 3: Compounding error analysis over horizons of 10–100

episodes (Section 3.4).
• Exp. 4: Saliency-stratified retention analysis (Section 3.5).
• Exp. 5: Knee-point detection for optimal operating ratios

using 50-point sweeps (Section 3.2).
All experiments use seed 42 and are fully deterministic. Source code,
data, and figure generation scripts are included in the supplemen-
tary material.

3 RESULTS
3.1 Pareto Frontier Characterization
Figure 1 shows the compression–retention trade-off for all three
operators. The key finding is that all three operators exhibit
concave Pareto frontiers: initial compression yields large token
savings with modest retention loss, while aggressive compression
below 𝑟 = 0.3 causes steep degradation. The concavity implies that
the “first 40% of savings come nearly for free”—a property with
strong practical implications for system design.

Table 1 presents retention values at key compression ratios. Sev-
eral patterns are notable:

Extractive compression shows the steepest transition between 𝑟 =
0.2 (33.3%) and 𝑟 = 0.4 (70.7%), a 37.4 percentage-point jump. This
reflects its binary sentence-level selection: at 𝑟 = 0.2, most sentences

3
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Table 1: Mean salient-fact retention at selected target com-
pression ratios across 100 episodes with 300 total facts. Ex-
tractive compression shows the sharpest transition between
𝑟=0.2 and 𝑟=0.4. Latent compression degrades most smoothly.
All operators achieve ≥88.7% retention at 𝑟=0.8.

Operator 𝑟=0.2 𝑟=0.4 𝑟=0.6 𝑟=0.8 𝑟=1.0
Extractive 0.333 0.707 0.870 0.980 1.000
Abstractive 0.220 0.617 0.873 0.963 0.980
Latent 0.393 0.590 0.747 0.887 1.000
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(b) Marginal Retention (Gradient)
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Figure 2: Optimal operating point detection via knee-point
analysis. (a) Pareto curves with detected knee points (dia-
monds). (b) Marginal retention (gradient of 𝜌 w.r.t. 𝑟 ), with
dashed vertical lines marking each operator’s knee. The ex-
tractive knee occurs at 𝑟∗=0.42; abstractive at 𝑟∗=0.59; latent
at 𝑟∗=0.26.

containing facts are excluded; by 𝑟 = 0.4, the informativeness-based
scoring begins to preferentially select fact-bearing sentences. Above
𝑟 = 0.6, retention rises steeply to 98.0% (𝑟 = 0.8) and 100% (𝑟 = 1.0).

Abstractive compression has a smoother curve due to its logistic
per-fact retention model. It underperforms extractive at low ratios
(𝑟 = 0.2: 22.0% vs. 33.3%) because the sigmoid probability is below
50% for all facts at this level. However, it converges quickly at
moderate ratios and nearly matches extractive at 𝑟 = 0.6 (87.3%). At
𝑟 = 1.0, abstractive retention is 98.0% rather than 100%, reflecting
the stochastic nature of summarization even without compression.

Latent compression degrades most smoothly, as predicted by the
sub-linear Beta model. It achieves the highest retention at very low
ratios (𝑟 = 0.2: 39.3%) but the lowest at moderate ratios (𝑟 = 0.6:
74.7%), creating a more gradual slope. This reflects the “graceful
degradation” property of dense embeddings, which preserve distri-
butional signal even at high compression but struggle to maintain
exact factual content at moderate compression.

3.2 Optimal Operating Points
We identify the optimal compression ratio for each operator using
knee-point analysis of the Pareto curve (Figure 2). The knee point
is defined as the ratio that maximizes the perpendicular distance
from the line connecting the frontier’s endpoints (𝑟min, 𝜌 (𝑟min))
and (𝑟max, 𝜌 (𝑟max)). Geometrically, this represents the point of
maximum curvature where additional compression begins to cause
disproportionate retention loss.
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10% 30% 50% 70% 90%
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Abstractive

10% 30% 50% 70% 90%
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Latent

Figure 3: Adaptive (purple) vs. uniform (gray) compression
across three operators and 10 token-budget levels (x-axis:
fraction of raw tokens). At extreme budgets (10–20%), adap-
tive allocation preserves critical episodes that uniform com-
pression destroys. At moderate budgets, the approaches con-
verge or uniform slightly leads.

The detected optimal ratios and their associated retentions are:
• Extractive: 𝑟∗ = 0.42, retention = 0.760 (76.0%)
• Abstractive: 𝑟∗ = 0.59, retention = 0.870 (87.0%)
• Latent: 𝑟∗ = 0.26, retention = 0.490 (49.0%)

These results show that the optimal compression level is operator-
dependent. The abstractive knee occurs at a higher ratio (𝑟∗ = 0.59)
because its smooth logistic curve concentrates curvature in the
middle of the range. The extractive knee (𝑟∗ = 0.42) reflects the
sharp binary transition around 𝑟 = 0.3–0.5. The latent knee (𝑟∗ =
0.26) is notably low, indicating that latent compression’s gradual
curve places its point of maximum curvature in the aggressive-
compression region—below this point, even the graceful latent
encoding loses substantial information.

The marginal retention analysis (Figure 2b) provides comple-
mentary insight. For extractive compression, marginal retention
peaks sharply near 𝑟 = 0.3 and drops rapidly, indicating a narrow
“sweet spot.” For abstractive compression, marginal retention is
more uniformly distributed, suggesting less sensitivity to the ex-
act ratio choice. Latent compression shows the flattest marginal
retention curve, consistent with its gradual degradation profile.

Practical guideline. These findings suggest that system design-
ers should calibrate compression targets to their specific operator
rather than using a universal default. A general recommendation
based on our results is to target the range 𝑟 ∈ [0.3, 0.6] as the “ef-
ficient frontier” where compression yields the best token savings
per unit of retention loss.

3.3 Adaptive vs. Uniform Compression
Figure 3 compares saliency-guided adaptive allocation against uni-
form compression across 10 budget levels, averaged over 8 down-
stream task queries.

Table 2 summarizes the retention delta (Δ𝜌) at selected bud-
get levels. The results reveal a nuanced picture with two distinct
regimes:

Regime 1: Extreme budgets (≤20% of raw tokens). Adaptive
allocation provides its largest gains here. At 10% budget, extractive-
adaptive achieves 10.2% retention compared to 0.0% for uniform
(Δ𝜌 = +10.2 pp), because the uniform ratio of 𝑟 = 0.1 falls below
the extractive threshold where any fact-bearing sentences can be
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Table 2: Retention delta of adaptive over uniform compres-
sion (Δ𝜌 in percentage points), averaged across 8 task queries.
Positive values (bold) indicate adaptive advantage. Adaptive
allocation is most beneficial at extreme budgets (≤20%) and
for abstractive compression.

Budget Extractive Abstractive Latent

10% +10.2 −0.1 −2.5
20% −1.5 +3.9 +0.5
30% −11.9 +1.4 −1.2
40% −9.8 −5.8 −0.7
50% −8.1 −11.0 −2.7
60% −9.3 −14.2 −3.1
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Figure 4: Retention gain of adaptive over uniform compres-
sion across token budgets. Extractive shows the largest adap-
tive gain at 10% budget (+10.2 pp); abstractive benefits at 20%
(+3.9 pp). At budgets above 25%, uniform compression is gen-
erally preferred, particularly for extractive and abstractive
operators.

retained. Adaptive allocation concentrates its limited budget on a
few high-saliency episodes at 𝑟 > 0.3, preserving some facts rather
than none. For abstractive at 20% budget, adaptive gains +3.9 pp
by routing tokens to episodes where the logistic retention curve is
steepest.

Regime 2: Moderate budgets (≥30% of raw tokens). Uniform
compression is competitive or superior. At 40% budget, uniform-
extractive achieves 72.0% retention vs. 62.2% for adaptive (Δ𝜌 =

−9.8 pp). This occurs because when the budget permits 𝑟 ≥ 0.4
uniformly, extractive compression enters its high-retention regime
for all episodes. Adaptive allocation, by contrast, over-compresses
low-saliency episodes below 𝑟 = 0.3, pushing them into the steep
degradation zone.

This finding has a clear practical implication: adaptive alloca-
tion should be deployed selectively, triggered when the token
budget is severely constrained relative to the memory size. At mod-
erate budgets, the simpler uniform strategy is preferred. A hybrid
policy could switch between adaptive and uniform based on the
budget-to-memory ratio.

Figure 4 provides a visual summary of the delta across the full
budget range, confirming that the crossover from adaptive advan-
tage to uniform advantage occurs at approximately 15–25% budget
depending on the operator.
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Figure 5: Mean fact retention vs. episode horizon for four
compression ratios across three operators. Atmoderate ratios
(𝑟 ≥ 0.4), retention remains stable, declining by at most 6.3 pp
from ℎ=10 to ℎ=100. At aggressive compression (𝑟=0.2), reten-
tion is uniformly low regardless of horizon length, indicating
that per-episode quality—not accumulation—dominates.
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Figure 6: Mean fact retention at 𝑟=0.4 stratified by saliency
bin (columns) and compression operator (rows). Retention at
a fixed ratio is largely independent of saliency level, confirm-
ing that saliency should determine which episodes receive
more tokens, not predict their inherent compressibility.

3.4 Retention Stability Over Episode Horizons
A critical concern for long-running agents is whether compression
errors compound over many episodes. Figure 5 examines retention
as the number of memory episodes grows from 10 to 100 at four
compression ratios.

For moderate compression (𝑟 ≥ 0.4), retention remains remark-
ably stable: extractive at 𝑟 = 0.6 achieves 93.3% at ℎ = 10 and 87.0%
at ℎ = 100, a decline of only 6.3 pp over a 10× increase in memory
length. Abstractive at 𝑟 = 0.6 shows similar stability (not plotted for
brevity). At 𝑟 = 0.8, extractive retention drops from 100% (ℎ = 10)
to 98.3% (ℎ = 100), a negligible 1.7 pp decline.

At aggressive compression (𝑟 = 0.2), retention is already low at
short horizons (33.3% for extractive at ℎ = 10) and remains flat, in-
dicating that per-step compression quality, not error accumulation, is
the dominant factor. This is an encouraging finding: it suggests that
agents can apply consistent moderate compression over long hori-
zons without catastrophic degradation, provided the per-episode
ratio is above the steep part of the Pareto curve.

3.5 Saliency-Stratified Analysis
Figure 6 presents retention at 𝑟 = 0.4 stratified by episode saliency
level (low, medium, high) and compression operator. Episodes are
binned by their saliency score: high (𝑠 ≥ 0.7), medium (0.3 ≤ 𝑠 <
0.7), and low (𝑠 < 0.3).
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The key finding is that at a fixed compression ratio, retention
is largely independent of saliency level. For extractive com-
pression, retention ranges from 69.6% (high-saliency) to 73.8% (low-
saliency)—a spread of only 4.2 pp. Abstractive shows a slightly
larger spread (60.5% to 64.0%), while latent ranges from 57.5% to
62.7%. These differences are within the noise range of our stochastic
compression models.

This result validates a core assumption of ITAMC: saliency
should determine the compression allocation (howmany tokens each
episode receives) rather than predicting inherent compressibility
(how well an episode compresses at a given ratio). In our controlled
setting, all episodes have similar structure (3 facts + 5 fillers), so
compressibility is uniform. In real-world settings, episode complex-
ity may vary, suggesting that a combined saliency-compressibility
model could further improve allocation.

4 DISCUSSION
Design recommendations. Based on our experimental findings,
we offer three concrete recommendations for designers of LLM
agent memory systems: (1) Target the range 𝑟 ∈ [0.3, 0.6] for mem-
ory compression, which sits on the efficient part of the Pareto
frontier across all operators. (2) Use saliency-guided adaptive al-
location when token budgets are below 25% of raw memory size;
use uniform compression above this threshold. (3) Prefer extractive
compression when exact fact preservation is critical (it achieves
100% retention at 𝑟 = 1.0 and sharp transitions make the high-
retention regime reliable), and latent compression when graceful
degradation under variable budgets is desired.

Connection to tieredmemory architectures. Our results pro-
vide quantitative support for tieredmemory designs likeMemGPT [10].
A three-tier system mapping to our findings would use: a hot tier
(𝑟 ≈ 0.8–1.0, ≥88.7% retention) for high-saliency recent episodes;
a warm tier (𝑟 ≈ 0.4–0.6, 59–87% retention) for medium-saliency
episodes; and a cold tier (𝑟 ≈ 0.1–0.2, 22–39% retention) for archival
episodes used primarily for broad retrieval matching.

Toward task-aware compression. Our saliency model uses a
simple combination of lexical overlap and recency. Richer models
that incorporate task structure—e.g., causal dependencies between
episodes, entity co-reference chains, or learned distortion predic-
tors trained on agent execution traces—could significantly improve
allocation quality. The rate-distortion framework naturally accom-
modates such extensions by replacing our proxy 𝜌𝑖 with a learned
distortion function.

5 CONCLUSION
We presented ITAMC, an information-theoretic framework for
adaptive memory compression in LLM-based agents. Through con-
trolled experiments on a synthetic benchmark with exact ground-
truth fact retention, we established four principal findings.

First, all three compression operators—extractive, abstractive,
and latent—exhibit concave Pareto frontiers, meaning moderate
compression (𝑟 ≈ 0.4–0.6) achieves 60–87% fact retention while
reducing tokens by 40–60%. This concavity implies that the first 40%
of token savings come at modest information cost, providing strong
motivation for adopting memory compression in agent systems.

Second, optimal compression ratios are operator-dependent:
knee-point analysis yields 𝑟∗ = 0.42 (extractive), 𝑟∗ = 0.59 (abstrac-
tive), and 𝑟∗ = 0.26 (latent). System designers should calibrate
compression targets to their specific operator and application re-
quirements.

Third, saliency-guided adaptive compression ismost beneficial
under extreme budget constraints (≤20% of raw memory), with
gains up to 10.2 pp for extractive compression at 10% budget. At
moderate budgets (≥30%), uniform compression is a competitive
and simpler baseline.

Fourth, moderate compression does not compound catastroph-
ically over agent horizons of up to 100 episodes, with retention
declining by at most 6.3 pp from ℎ = 10 to ℎ = 100 at 𝑟 = 0.6.

Limitations. Our experiments use synthetic data with con-
trolled fact structure. While this enables precise retention measure-
ment, it does not capture the full complexity of real-world memory
content where facts have varying importance, interdependencies,
and ambiguous boundaries. The compression operators are simula-
tion proxies; validation with actual LLM-based summarizers and
embedding models is needed. Extending ITAMC to dynamic online
settings where saliency shifts during execution, and integrating
with retrieval-augmented generation systems, remain important
directions for future work.
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