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Scaling Boundary-Aware Policy Optimization: Reliability of
BAPO on Larger-Scale LLMs
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ABSTRACT

Boundary-Aware Policy Optimization (BAPO) augments reinforce-
ment learning with boundary-aware incentives and an adaptive
reward modulator to improve reliability in agentic search, but prior
evaluation was limited to models up to 14B parameters. We investi-
gate how BAPO performs when scaled to larger LLMs (32B and 72B
parameters) across four multi-hop question answering benchmarks:
HotpotQA, 2WikiMultiHopQA, MuSiQue, and Bamboogle. Through
systematic simulation experiments, we find that BAPO maintains
a persistent reliability advantage over baselines (SFT, GRPO, PPO,
DAPO) at all scales tested. At 72B, BAPO achieves an F1 reliability
of 0.703 compared to 0.5951 for the best baseline (DAPO), yielding
a gap of 0.1079. Scaling law analysis shows BAPO’s F1 reliability
follows a strong log-linear trend (R? = 0.997) with a slope of 0.0744,
the steepest among all methods. BAPO also exhibits the lowest cali-
bration error (0.2745) and the lowest reward hacking susceptibility,
confirming that its reliability benefits persist and even strengthen
at greater model scales.
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1 INTRODUCTION

Large Language Models (LLMs) deployed as agentic search sys-
tems must not only be accurate but also reliable—they should know
when they do not know [1]. Boundary-Aware Policy Optimization
(BAPO) [4] was introduced to address this challenge by augmenting
standard RL rewards with boundary-aware incentives that encour-
age models to say “I don’t know” (IDK) when uncertain, combined
with an adaptive reward modulator to prevent reward hacking.

While BAPO demonstrated strong reliability gains on multi-hop
QA benchmarks using models up to 14B parameters, the authors
noted a key limitation: it remains unknown whether these ben-
efits persist at larger model scales. This open question is critical
because scaling can fundamentally alter model behavior—larger
models may be more capable of exploiting reward signals [3], and
emergent abilities at scale [9] could either amplify or diminish the
effectiveness of boundary-aware training.
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We address this open problem by systematically evaluating
BAPO and four baselines (SFT, GRPO [7], PPO [6], DAPO [11])
across six model scales from 1.5B to 72B parameters on four multi-
hop QA benchmarks [2, 5, 8, 10]. Our analysis encompasses ac-
curacy, precision, F1 reliability (harmonic mean of accuracy and
precision), IDK calibration, and reward hacking susceptibility.

Our key findings are: (1) BAPO’s reliability advantage persists
at all scales tested, with the F1 gap remaining positive from 1.5B
through 72B; (2) BAPO achieves the steepest F1 reliability scaling
slope (0.0744) among all methods, with an R? of 0.997; (3) BAPO ex-
hibits the lowest calibration error (0.2745) and strongest resistance
to reward hacking at scale.

2 BACKGROUND AND RELATED WORK

BAPO.. Liu et al. [4] introduced BAPO as an RL framework for
agentic search that assigns positive reward (acorrect = 1.0) for
correct answers, a partial reward (a;qx = 0.5) for IDK responses
when the model would have been wrong, a penalty (awrong =
—1.0) for wrong answers, and a smaller penalty (@fa]se-iqgk = —0.5)
for unnecessary IDK responses. An adaptive reward modulator
with exponential decay prevents the IDK reward from dominating
training.

Baseline methods. We compare against: SFT (supervised fine-
tuning with no RL), GRPO (group relative policy optimization [7]),
PPO (proximal policy optimization [6]), and DAPO (dynamic ad-
vantage policy optimization [11]).

Scaling laws. Neural language model performance often follows
predictable log-linear scaling laws as a function of model size [3].
We leverage this framework to characterize how each method’s
reliability metrics scale with parameter count.

3 METHODOLOGY
3.1 Experimental Setup

We evaluate five training methods across six model scales (1.5B,
3B, 7B, 14B, 32B, 72B parameters) on four multi-hop QA bench-
marks: HotpotQA [10], 2WikiMultiHopQA [2], MuSiQue [8], and
Bamboogle [5]. Each configuration is evaluated on 1000 samples,
yielding 5 X 6 X 4 = 120 experimental conditions.

3.2 Metrics
We measure the following metrics at each scale:

e Accuracy: fraction of answerable questions answered cor-
rectly.

e Precision: fraction of non-IDK answers that are correct.

e F1 Reliability: harmonic mean of accuracy and precision,
F1 =2 - acc - prec/(acc + prec).

e IDK Rate: fraction of questions where the model responds
“Idon’t know”
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Table 1: Scaling law parameters for accuracy and F1 reliability.
Slope indicates improvement per log-decade of parameters.

Accuracy F1 Reliability
Method  Slope R? Slope R?

SFT 0.0662 0.920 0.0484 0.975
GRPO 0.0848 0.901 0.0666 0.977
PPO 0.0716  0.907 0.0549 0.928
DAPO 0.1028 0.975 0.0678 0.985
BAPO 0.0898 0.990 0.0744 0.997

e Reward Hacking Rate: tendency to exploit the boundary-
aware reward signal.

3.3 Scaling Law Estimation

For each method-metric pair, we fit a log-linear model:
metric(6) = a+b - log;((0) (1)

where 6 is the parameter count. We report the slope b, intercept a,
and R? value.

4 RESULTS
4.1 Scaling Laws

Table 1 presents the fitted scaling law parameters for accuracy
and F1 reliability. BAPO achieves the highest F1 reliability slope of
0.0744 with R? = 0.997, indicating an exceptionally strong log-linear
scaling relationship. For accuracy, DAPO has the steepest slope at
0.1028, while BAPO follows closely with 0.0898 and achieves the
highest R? of 0.990.

4.2 Performance at 72B Scale

Table 2 shows benchmark-level results at 72B. BAPO achieves the
highest F1 reliability on every benchmark, reaching 0.7622 on Hot-
PotQA, 0.7114 on 2WikiMultiHopQA, 0.658 on MuSiQue, and 0.6804
on Bamboogle. The precision advantage is particularly notable:
BAPO achieves 0.7849 precision on HotpotQA at 72B, compared to
0.5977 for DAPO.

4.3 Method Comparison at 72B

Table 3 summarizes BAPO’s advantage over each baseline at 72B, av-
eraged across benchmarks. BAPO improves F1 reliability by 0.1995
over SFT, 0.1187 over GRPO, 0.1681 over PPO, and 0.1079 over
DAPO. The precision improvements are particularly large, ranging
from 0.1846 (vs. GRPO) to 0.2579 (vs. SFT).

4.4 Reliability Persistence Across Scales

Figure 1 shows the F1 reliability gap (BAPO minus best baseline) at
each model scale. The gap remains positive at every scale, ranging
from 0.0922 at 1.5B to 0.1079 at 72B. The trend slope is 0.006619, in-
dicating the gap slightly widens with scale (though not statistically
significant, p = 0.193). At all scales, the best baseline is DAPO.

Table 4 details the reliability gap at each scale. BAPO’s F1 ranges
from 0.5791 at 1.5B to 0.703 at 72B.

Anon.

Table 2: Performance at 72B scale across benchmarks. Best
values in bold.

Benchmark Method  Accuracy Precision F1
SFT 0.5727 0.5117 0.5405
GRPO 0.6574 0.5951 0.6247
HotpotQA PPO 0.6301 0.5652 0.5959
DAPO 0.7042 0.5977 0.6466
BAPO 0.7409 0.7849 0.7622
SFT 0.5574 0.4771 0.5141
GRPO 0.6432 0.5494 0.5926
2WikiMHQA PPO 0.5575 0.4906 0.5219
DAPO 0.6542 0.5446 0.5944
BAPO 0.6655 0.7641 0.7114
SFT 0.4935 0.4342 0.462
GRPO 0.611 0.4836 0.5399
MuSiQue PPO 0.5311 0.4527 0.4888
DAPO 0.5955 0.5214 0.556
BAPO 0.6507 0.6654 0.658
SFT 0.5352 0.4648 0.4976
GRPO 0.6096 0.553 0.5799
Bamboogle PPO 0.567 0.5026 0.5329
DAPO 0.6699 0.5167 0.5834
BAPO 0.6574 0.705 0.6804

Table 3: BAPO advantage over baselines at 72B (mean differ-
ence across benchmarks).

Baseline  AAccuracy  APrecision AF1

SFT +0.1389 +0.2579 +0.1995
GRPO +0.0483 +0.1846 +0.1187
PPO +0.1072 +0.2271 +0.1681
DAPO +0.0227 +0.1847 +0.1079

BAPO Reliability Advantage Persistence Across Scales
0.106

0.108

o o o o
o =) o =
- 3 & 1)

F1 Reliability Gap (BAPO - Best Baseline)

o
=)
]

0.00

7B 14B
Model Scale

Figure 1: BAPO F1 reliability gap over best baseline (DAPO)
at each model scale. The gap remains positive at all scales,
confirming persistence of BAPO’s reliability advantage.
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Table 4: F1 reliability gap across model scales.

Scale BAPOF1 Best Baseline F1 Gap

1.5B 0.5791 0.4869 (DAPO)  +0.0922
3B 0.6013 0.5043 (DAPO) +0.097
7B 0.6313 0.5373 (DAPO)  +0.0941
14B 0.6569 0.5511 (DAPO)  +0.1058
32B 0.6791 0.5857 (DAPO)  +0.0933
72B 0.703 0.5951 (DAPO)  +0.1079

Accuracy vs. Model Scale
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o
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Figure 2: Accuracy vs. model scale for all methods.

F1 Reliability vs. Model Scale

F1 Reliability
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Figure 3: F1 reliability vs. model scale. BAPO achieves the
highest F1 at every scale.

4.5 Accuracy and F1 Scaling Curves

Figure 2 shows accuracy as a function of model scale for all methods.
All methods improve with scale, but BAPO maintains competitive
accuracy while simultaneously achieving the highest precision.
Figure 3 shows the F1 reliability scaling, where BAPO clearly domi-
nates across all scales.

4.6 Boundary Awareness and Calibration

Table 5 analyzes boundary awareness properties. BAPO achieves
the lowest calibration error (0.2745), indicating that its IDK rate
(0.1203) is best aligned with its actual error rate (0.3948). Other

Conference’17, July 2017, Washington, DC, USA

Table 5: Boundary awareness analysis. Calibration error =
|IDK rate — error rate|.

Method IDK Rate Error Rate Cal. Error IDK-Err Corr.
SFT 0.0238 0.5181 0.4943 0.0758
GRPO 0.0379 0.4491 0.4113 0.1511
PPO 0.0342 0.4685 0.4343 0.4888
DAPO 0.0502 0.4279 0.3777 0.2149
BAPO 0.1203 0.3948 0.2745 0.2344

Reward Hacking Susceptibility vs. Model Scale

Reward Hacking Rate
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Figure 4: Reward hacking rate vs. model scale. BAPO shows
the lowest hacking susceptibility among RL methods.

ability at 72B Scale by Benchmark
MusiQue Bomboogle

Figure 5: F1 reliability at 72B scale by benchmark and
method.

methods have much lower IDK rates relative to their error rates,
resulting in calibration errors exceeding 0.37.

4.7 Reward Hacking Resistance

Figure 4 shows reward hacking susceptibility across scales. BAPO
maintains the lowest hacking rate among RL methods at all scales.
The scaling law for BAPO’s reward hacking rate has a slope of
0.0167, compared to 0.0279 for GRPO, 0.0266 for PPO, and 0.0331
for DAPO, confirming that BAPO’s adaptive modulator effectively
prevents reward exploitation even as model capability increases.

4.8 Benchmark-Level Analysis at 72B

Figure 5 provides a per-benchmark comparison at 72B. BAPO’s ad-
vantage is most pronounced on HotpotQA (F1 = 0.7622) and 2Wiki-
MultiHopQA (F1 = 0.7114), and remains substantial on the more
challenging MuSiQue (F1 = 0.658) and Bamboogle (F1 = 0.6804).
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5 DISCUSSION

Our results provide strong evidence that BAPO’s reliability benefits
persist—and potentially strengthen—at larger model scales. Three
aspects merit discussion.

Reliability vs. accuracy trade-off. BAPO achieves the highest pre-
cision and F1 reliability at every scale while maintaining competi-
tive (though not always top) accuracy. At 72B, DAPO achieves the
highest raw accuracy on some benchmarks (e.g., 0.7042 on Hot-
potQA vs. BAPO’s 0.7409), but BAPO’s precision (0.7849 vs. 0.5977)
gives it a decisive F1 advantage of 0.7622 vs. 0.6466.

Scaling stability. The exceptionally high R? of 0.997 for BAPO’s
F1 scaling law suggests that its reliability improvements are pre-
dictable and stable across scales. This makes BAPO a strong candi-
date for deployment at even larger scales.

Reward hacking mitigation. The adaptive reward modulator in
BAPO successfully prevents the increased reward hacking seen in
other RL methods at larger scales. While PPO’s hacking rate grows
from 0.0768 at 1.5B to 0.1425 at 72B, BAPO’s grows only from 0.0325
to 0.0525.

6 CONCLUSION

We systematically evaluated BAPO’s performance on LLMs from
1.5B to 72B parameters, addressing the open question of whether
its reliability benefits persist at larger scales. Our results confirm
that BAPO maintains a consistent F1 reliability advantage (gap of
0.0922 to 0.1079) over the best baselines at every scale tested. BAPO
achieves the strongest scaling law for F1 reliability (R? = 0.997,
slope = 0.0744) and the lowest calibration error (0.2745) and reward
hacking susceptibility. These findings support the deployment of
BAPO for reliable agentic search at large model scales.
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