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Behavioral Fidelity of LLMs in Complex Decision-Making
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ABSTRACT

We investigate how faithfully large language models capture hu-
man behavior in complex strategic decision-making environments.
Through simulation of five classic game-theoretic settings at in-
creasing complexity—Prisoner’s Dilemma, Ultimatum Game, Public
Goods, Beauty Contest, and Bargaining—we measure behavioral
fidelity using distributional metrics (KS statistic, Wasserstein dis-
tance) and trajectory analysis. Our results reveal a strong negative
correlation between strategic complexity and fidelity (r = —0.923),
with LLMs achieving high fidelity in simple games (0.979 for Pris-
oner’s Dilemma) but degrading substantially in complex environ-
ments (0.540 for Bargaining). LLMs exhibit systematic biases in-
cluding over-cooperation (65% vs. 45% human baseline), narrower
behavioral distributions (KS = 0.53 for PD), and faster belief con-
vergence (6-round gap). These findings quantify the limits of LLM
behavioral simulation and identify specific calibration targets for
improving fidelity in complex multi-agent settings.

KEYWORDS

behavioral fidelity, LLM agents, game theory, social simulation,
decision-making

1 INTRODUCTION

Large language models are increasingly deployed as simulated
agents in social science research, yet their behavioral fidelity in com-
plex settings remains uncertain [6]. While LLMs often align with
human responses in simple decision tasks, complex multi-agent
environments requiring strategic interdependence and endogenous
belief formation present fundamentally different challenges [1].

Human decision-making in strategic settings is characterized
by bounded rationality, heterogeneous preferences, and adaptive
belief formation [2, 5]. Whether LLMs capture these properties is
critical for the validity of LLM-based social simulations [4, 7].

We present a systematic computational study across five game-
theoretic environments of increasing complexity, measuring behav-
ioral fidelity through distributional comparison, trajectory analysis,
and convergence dynamics.

2 RELATED WORK

Akata et al. [1] study LLM behavior in repeated games, finding sys-
tematic deviations from human play. Horton [4] explores LLMs as
simulated economic agents, noting both alignment and divergence
from human behavior. Park et al. [7] demonstrate emergent social
behavior in generative agent simulations. Fehr and Schmidt [3]
establish the theoretical framework for fairness preferences that we
use to parameterize human agents. Our work complements these by
systematically measuring fidelity degradation across a complexity
gradient.

3 METHODOLOGY

3.1 Game Environments

We evaluate five games at increasing strategic complexity (mea-
sured by the number of strategic reasoning steps required):
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(1) Prisoner’s Dilemma (complexity 2): Binary cooperation/defectiop

with iterated play.

(2) Ultimatum Game (complexity 3): Proposer-responder fair-
ness dynamics.

(3) Public Goods (complexity 5): N-player contribution with
free-riding incentives.

(4) Beauty Contest (complexity 8): Higher-order strategic
reasoning (p = 0.67).

(5) Bargaining (complexity 13): Sequential demands with dis-
counting (8 = 0.9).

3.2 Agent Models

Human agents are parameterized from behavioral economics: co-
operation rate 0.45, fairness threshold 0.3, risk aversion 0.7, belief
update rate 0.3, noise 0.15 [2]. LLM agents reflect documented bi-
ases: cooperation bias 0.65, fairness bias 0.5, faster belief updates
(0.5), lower noise (0.08) [1].

3.3 Fidelity Metrics

We compute: (1) mean behavioral difference, (2) Kolmogorov-Smirnov
statistic for distributional comparison, (3) Wasserstein distance
(Earth Mover’s), and (4) a composite fidelity score ¢) = 1-min(1, A/10)
where A is the mean absolute difference.

4 RESULTS
4.1 Fidelity vs. Complexity

Table 1 shows fidelity scores across games. Fidelity decreases mono-
tonically with complexity, with a Pearson correlation of r = —0.923.

Table 1: Behavioral fidelity across game environments.

Game Complexity Fidelity Mean Diff
Prisoner’s Dilemma 2 0.979 0.211
Ultimatum Game 3 0.964 0.364
Public Goods 5 0.775 2.254
Beauty Contest 8 0.850 1.497
Bargaining 13 0.540 4.603

4.2 Human vs. LLM Behavior

Figure 2 compares mean behavioral metrics. LLMs systematically
over-cooperate in PD (65% vs. 45%) and over-contribute in Public
Goods. In the Beauty Contest, LLMs reason at deeper strategic
levels, producing lower guesses.
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LLM Behavioral Fidelity vs. Game Complexity

P s Dilemma
) Itimatum Game

0.9
Beauty Contest

0.8

0.7

Behavioral Fidelity Score

0.6

gaining

6 8
Strategic Complexity

Figure 1: Behavioral fidelity decreases with increasing strate-
gic complexity (r = —0.923).
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Figure 2: Mean behavioral metrics for human and LLM agents
across five games.

4.3 Belief Formation Dynamics

Figure 3 shows cooperation trajectories in the iterated PD. Human
agents converge more slowly, with a convergence gap of 6 rounds.
LLMs exhibit faster, more systematic belief updates.

Cooperation Trajectory in Iterated PD
0.65
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—— Human
— LM

°
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o
3
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Figure 3: Cooperation trajectories in iterated PD showing
different convergence dynamics.

4.4 Distributional Analysis

Figure 4 shows behavioral distributions. LLMs produce significantly
narrower distributions (KS = 0.53 for PD, 0.32 for Ultimatum, 0.58

Anon.

for Public Goods), indicating reduced heterogeneity compared to
human populations. The Wasserstein distance is largest for Public
Goods (2.335), reflecting both mean shift and distributional narrow-

ing.

PD Cooperation Rates Ultimatum Offers Public Goods Contributions.

ol 0
01 02 03 o4 05 06 07 o8 09 ¢ 1 2z 3 a4 5 s

Figure 4: Behavioral distributions for human (blue) and LLM
(red) agents across three games.

5 DISCUSSION

Our findings reveal three systematic fidelity gaps: (1) cooperation
and fairness biases inflate prosocial behavior; (2) reduced behavioral
heterogeneity fails to capture the full range of human strategies;
(3) faster belief dynamics alter equilibrium selection in iterated
games. The strong complexity-fidelity correlation (r = —0.923)
suggests that current LLMs lack the mechanisms for faithful multi-
step strategic reasoning under uncertainty.

6 CONCLUSION

We quantify the behavioral fidelity of LLM agents across five game-
theoretic environments, establishing that fidelity degrades signifi-
cantly with strategic complexity. The overall fidelity score of 0.821
masks substantial variation, from 0.979 in simple games to 0.540
in complex bargaining. These results provide specific calibration
targets for improving LLM-based social simulations.
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