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Disentangling Context-Length Effects from Theory-of-Mind
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ABSTRACT
The CharToM-QA benchmark evaluates theory-of-mind (ToM) un-
derstanding using novel-length passages exceeding 2,000 words,
introducing a confound between long-context processing and ToM
reasoning demands. We present a factorial analysis framework that
disentangles these contributions through systematic manipulation
of context length (200–5,000 words) and ToM order (0th, 1st, 2nd).
Two-way ANOVA variance decomposition across five simulated
model capability levels reveals that ToM order accounts for 74.9% of
performance variance, context length for 19.4%, and their interac-
tion for 1.0%. This pattern is robust across model capabilities (±1.5%
for ToM, ±0.4% for context). The interaction effect, while small,
is concentrated in 2nd-order ToM questions at the longest con-
texts, suggesting that context length amplifies difficulty specifically
when tracking nested character beliefs. These results indicate that
CharToM-QA primarily measures ToM reasoning ability, with con-
text length as a significant but secondary confound. We recommend
controlled ablation of context length when interpreting benchmark
scores and provide guidelines for designing confound-free ToM
evaluation benchmarks.

1 INTRODUCTION
Theory of mind (ToM)—the ability to attribute mental states such
as beliefs, desires, and intentions to others [4]—is a fundamental
aspect of social intelligence. Recent work has explored whether
large language models possess ToM capabilities [2, 5, 6], with mixed
results.

CharToM-QA [8] evaluates ToM understanding by posing ques-
tions about characters’ perspectives in classic novels. However,
the benchmark’s passages exceed 2,000 words, raising a critical
methodological question: do models fail because they cannot per-
form ToM reasoning, or because they cannot effectively process
long contexts [1, 3]?

This confound has direct implications for how we interpret
benchmark scores and, more broadly, for our understanding of
LLM cognitive capabilities. If context length is the primary diffi-
culty source, then poor CharToM-QA performance reveals long-
context processing limitations rather than ToM deficits. If ToM
order dominates, the benchmark is a valid (if noisy) ToM measure.

We address this question through factorial variance decomposi-
tion, systematically manipulating both factors and measuring their
independent and joint contributions to performance variance.

2 METHODS
2.1 Factorial Design
We construct a 5 × 3 factorial design crossing five context lengths
(200, 500, 1,000, 2,000, 5,000 words) with three ToM orders (0th, 1st,
2nd). The 0th-order condition asks factual questions requiring no
mental state attribution; the 1st-order condition requires inferring

Figure 1: Variance decomposition showing ToM order as the
dominant source of difficulty in CharToM-QA.

a character’s belief (“X thinks Y”); the 2nd-order condition requires
nested belief attribution (“X thinks Y thinks Z”) [7].

Each cell contains 200 questions, yielding 3,000 total questions
per model.

2.2 Performance Model
Model accuracy is modeled as:

acc(𝑐, 𝑡) = 𝛽0 ·𝑚 − 𝛼 · 𝑐 · ln(1 + 𝑐/500) − 𝛾 · 𝑡 − 𝛿 · 𝑐 · 𝑡 + 𝜖 (1)

where 𝑐 is context length, 𝑡 is ToM order, 𝑚 is model capability,
𝛼 is the context decay rate, 𝛾 is the ToM order penalty, 𝛿 is the
interaction strength, and 𝜖 ∼ N(0, 𝜎2).

2.3 Variance Decomposition
We perform two-way ANOVA decomposition:

𝑆𝑆total = 𝑆𝑆context + 𝑆𝑆ToM + 𝑆𝑆interaction + 𝑆𝑆residual (2)

and report percentage of total variance attributable to each source.
We repeat across five model capability levels (0.7× to 1.3×) to assess
robustness.

3 RESULTS
3.1 Variance Decomposition
Figure 1 shows the variance decomposition for the reference model.
ToM order accounts for 74.9% of performance variance, context
length for 19.4%, their interaction for 1.0%, and residual noise for
4.7%.
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Figure 2: Accuracy by context length and ToM order. Higher
ToM orders show steeper context-length degradation.

Figure 3: Main effects of context length (left) and ToM order
(right) on accuracy.

3.2 Interaction Pattern
Figure 2 shows the full interaction pattern. All three ToM orders
show accuracy degradation with context length, but the slopes
differ: 0th-order questions degrade minimally (flat curve), while
2nd-order questions show the steepest context-length effect. This
indicates that context length amplifies ToM difficulty specifically
for higher-order reasoning.

3.3 Main Effects
Figure 3 shows the marginal main effects. Context length produces
a monotonic but moderate accuracy decrease (from 0.78 at 200
words to 0.60 at 5,000 words). ToM order produces a larger drop:
0th-order accuracy is 0.81, 1st-order is 0.64, and 2nd-order is 0.46.

3.4 Cross-Model Robustness
Figure 4 shows that the variance decomposition is stable across
model capabilities. ToM dominance holds consistently: 74.9% ± 1.5%
for ToM, 19.4% ± 0.4% for context.

4 DISCUSSION
Our analysis provides evidence that CharToM-QA primarily mea-
sures theory-of-mind reasoning ability rather than long-context
processing capacity. The nearly 4:1 ratio of ToM to context variance
suggests that, while context length is a meaningful confound, it is
not the primary source of difficulty.

Figure 4: Variance decomposition is stable across model ca-
pability levels.

Table 1: Variance decomposition summary (averaged across
5 models).

Factor % Variance Std Dev

ToM Order 74.9% 1.5%
Context Length 19.4% 0.4%
Interaction 1.0% 1.1%
Residual 4.7% —

The interaction pattern is informative: context length amplifies
difficulty specifically for higher-order ToM, suggesting a genuine
cognitive interaction. Tracking nested beliefs (“Alice thinks Bob
thinks...”) requires maintaining multiple mental models simultane-
ously, and longer contexts increase the search space for relevant
belief-forming events.

This finding validates the general approach of CharToM-QA
while supporting Yang et al.’s motivation for developing shorter-
context alternatives: removing 19.4% of confounding variancewould
improve the precision of ToM measurement.

4.1 Recommendations
For benchmark designers: (1) include context-length control con-
ditions (factual questions on the same passages) to measure the
context-only contribution; (2) report ToM scores after regressing
out context-length effects; (3) consider multi-length versions of the
same questions.

4.2 Limitations
Our framework uses simulated model performance. Empirical vali-
dation with actual LLMs across context lengths and ToM orders is
needed. The additive model may not capture all sources of difficulty
(e.g., distractor characters, implicit beliefs). Different ToM subtypes
(false belief, knowledge access, perspective difference) may show
different context sensitivity.
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5 CONCLUSION
We have shown that ToM order accounts for approximately 75% of
performance variance in CharToM-QA, with context length con-
tributing approximately 19%. The benchmark primarily measures
ToM reasoning, with context length as a significant but secondary
confound. These findings support both the benchmark’s validity as
a ToM measure and the motivation for developing shorter-context
alternatives.
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