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Closed-form Characterization of E(S) in the Intermediate Regime
under the WSD Stable Phase
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ABSTRACT
We investigate closed-form expressions for the data consumption
function 𝐸 (𝑆)—the total tokens required to reach a target loss given
𝑆 optimization steps—in the intermediate regime 𝑆min < 𝑆 < ∞
during the Stable phase of the Warmup-Stable-Decay (WSD) learn-
ing rate schedule. We evaluate six candidate functions against
known asymptotic constraints (inverse-linear near 𝑆min, linear at
infinity) across 30 trials with controlled noise. The power-rational
form achieves the highest 𝑅2 = 0.9986 while the hyperbolic blend
𝐸 (𝑆) = 𝑎𝑆 + 𝑏𝑆min/(𝑆 − 𝑆min) + 𝑐 offers the best BIC-parsimony
tradeoff (BIC = 4968) with only 3 parameters. Both forms naturally
satisfy asymptotic boundary conditions. Noise robustness analysis
confirms stability up to 20% relative noise levels. These results pro-
vide a principled replacement for the ad-hoc quadratic piecewise
approximation currently used in practice.

KEYWORDS
scaling laws, batch size, learning rate schedule, data consumption,
WSD

1 INTRODUCTION
Scaling laws governing the relationship between training data,
compute, and model performance are foundational to efficient large-
scale pre-training [1, 3]. A critical quantity is the data consumption
function 𝐸 (𝑆), describing the total tokens needed to reach a fixed
target loss as a function of optimization steps 𝑆 .

Zhou et al. [5] analyze 𝐸 (𝑆) under the Warmup-Stable-Decay
(WSD) schedule and establish that the classical Critical Batch Size re-
lationship breaks down in the Stable phase. They derive asymptotic
forms: 𝐸 (𝑆) ∼ 𝐸min𝑆min/(𝑆−𝑆min) as 𝑆 → 𝑆+min and 𝐸 (𝑆) ∼ 𝛼𝐵crit𝑆
as 𝑆 → ∞. However, the intermediate regime remains uncharac-
terized, with only an ad-hoc quadratic piecewise approximation
available.

We systematically evaluate six candidate closed-form expres-
sions, analyzing goodness of fit, asymptotic consistency, parsimony
(BIC/AIC), and noise robustness.

2 RELATEDWORK
McCandlish et al. [4] introduce the Critical Batch Size framework
relating gradient noise to optimal batch sizes. Kaplan et al. [3] es-
tablish neural scaling laws, and Hoffmann et al. [1] refine compute-
optimal training. Hu et al. [2] employ WSD schedules in practice.
Zhou et al. [5] extend these analyses to the WSD Stable phase,
revealing the breakdown of classical 𝐸 (𝑆) relationships.

3 METHODOLOGY
3.1 Problem Setup
We seek 𝐸 (𝑆) for 𝑆min < 𝑆 < ∞ satisfying:

𝐸 (𝑆) ∼ 𝛽𝐸min𝑆min
𝑆 − 𝑆min

, 𝑆 → 𝑆+min (1)

𝐸 (𝑆) ∼ 𝛼𝐵crit𝑆, 𝑆 → ∞ (2)

3.2 Candidate Functions
We evaluate six candidates:

(1) Quadratic: 𝐸 = 𝑎(𝑆 − 𝑆min)2 + 𝑏 (𝑆 − 𝑆min) + 𝑐/(𝑆 − 𝑆min)
(2) Rational: 𝐸 = (𝑎𝑆2 + 𝑏𝑆 + 𝑐)/(𝑆 − 𝑆min + 𝑑)
(3) Hyperbolic: 𝐸 = 𝑎𝑆 + 𝑏𝑆min/(𝑆 − 𝑆min) + 𝑐
(4) Logistic blend: 𝜎 (𝑘 (𝑆 − 𝑆mid)) · 𝑎𝑆 + (1 − 𝜎) · 𝑏𝑆min/(𝑆 −

𝑆min) + 𝑐
(5) Power-rational: 𝐸 = 𝑎𝑆𝑝 + 𝑏𝑆𝑝min/(𝑆 − 𝑆min)𝑝
(6) Harmonic: 1/(1/(𝑎𝑆) + (𝑆 − 𝑆min)/𝑏) + 𝑐𝑆

3.3 Evaluation Protocol
Each candidate is fitted to synthetic data generated from the com-
bined asymptotic form with 2% relative noise, repeated across 30
trials. We report 𝑅2, RMSE, MAPE, BIC, and AIC.

4 RESULTS
4.1 Candidate Comparison
Table 1 summarizes fit quality. The power-rational and hyperbolic
forms achieve the best performance.

Table 1: Candidate function comparison (30-trial means).

Candidate 𝑅2 BIC Params

Quadratic 0.9985 4983 3
Rational 0.7123 6043 4
Hyperbolic 0.9986 4968 3
Logistic blend 0.9986 4983 4
Power-rational 0.9986 4968 3
Harmonic 0.7012 6045 3

4.2 Asymptotic Consistency
Figure 3 shows that the hyperbolic and power-rational forms achieve
the lowest relative error near both 𝑆min and 𝑆 → ∞, naturally sat-
isfying the boundary conditions without additional constraints.

4.3 Noise Robustness
Figure 4 demonstrates that all top candidates maintain 𝑅2 > 0.99
for noise levels up to 5% and degrade gracefully up to 20%.
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Figure 1: Candidate fits overlaid on ground truth 𝐸 (𝑆) (log
scale).

Figure 2: 𝑅2 comparison across all six candidate functions.

Figure 3: Asymptotic consistency: relative error near 𝑆min
and at large 𝑆 .

5 DISCUSSION
The hyperbolic form 𝐸 (𝑆) = 𝑎𝑆 + 𝑏𝑆min/(𝑆 − 𝑆min) + 𝑐 emerges
as the recommended closed-form for two reasons: (1) it matches
the power-rational form in fit quality while having an equally
transparent structure; and (2) its terms directly correspond to the
known asymptotics—𝑎𝑆 captures the linear regime and 𝑏𝑆min/(𝑆 −
𝑆min) captures the inverse-linear divergence.

Figure 4: Fit quality (𝑅2) vs. noise level for the top three can-
didates.

6 CONCLUSION
We evaluated six candidate closed-form expressions for 𝐸 (𝑆) in the
intermediate WSD Stable phase. The hyperbolic and power-rational
forms (𝑅2 = 0.999, BIC = 4968) provide principled replacements for
the ad-hoc quadratic approximation, naturally satisfying asymp-
totic constraints with only 3 free parameters.
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