

1 Closed-form Characterization of $E(S)$ in the Intermediate Regime 2 under the WSD Stable Phase

3 Anonymous Author(s)

4 ABSTRACT

5 We investigate closed-form expressions for the data consumption
6 function $E(S)$ —the total tokens required to reach a target loss given
7 S optimization steps—in the intermediate regime $S_{\min} < S < \infty$
8 during the Stable phase of the Warmup-Stable-Decay (WSD) learning
9 rate schedule. We evaluate six candidate functions against
10 known asymptotic constraints (inverse-linear near S_{\min} , linear at
11 infinity) across 30 trials with controlled noise. The power-rational
12 form achieves the highest $R^2 = 0.9986$ while the hyperbolic blend
13 $E(S) = aS + bS_{\min}/(S - S_{\min}) + c$ offers the best BIC-parsimony
14 tradeoff (BIC = 4968) with only 3 parameters. Both forms naturally
15 satisfy asymptotic boundary conditions. Noise robustness analysis
16 confirms stability up to 20% relative noise levels. These results pro-
17 vide a principled replacement for the ad-hoc quadratic piecewise
18 approximation currently used in practice.

23 KEYWORDS

24 scaling laws, batch size, learning rate schedule, data consumption,
25 WSD

32 1 INTRODUCTION

33 Scaling laws governing the relationship between training data,
34 compute, and model performance are foundational to efficient large-
35 scale pre-training [1, 3]. A critical quantity is the data consumption
36 function $E(S)$, describing the total tokens needed to reach a fixed
37 target loss as a function of optimization steps S .

38 Zhou et al. [5] analyze $E(S)$ under the Warmup-Stable-Decay
39 (WSD) schedule and establish that the classical Critical Batch Size re-
40 lationship breaks down in the Stable phase. They derive asymptotic
41 forms: $E(S) \sim E_{\min}S_{\min}/(S - S_{\min})$ as $S \rightarrow S_{\min}^+$ and $E(S) \sim \alpha B_{\text{crit}}S$
42 as $S \rightarrow \infty$. However, the intermediate regime remains uncharac-
43 terized, with only an ad-hoc quadratic piecewise approximation
44 available.

45 We systematically evaluate six candidate closed-form expres-
46 sions, analyzing goodness of fit, asymptotic consistency, parsimony
47 (BIC/AIC), and noise robustness.

50 2 RELATED WORK

52 McCandlish et al. [4] introduce the Critical Batch Size framework
53 relating gradient noise to optimal batch sizes. Kaplan et al. [3] es-
54 tablish neural scaling laws, and Hoffmann et al. [1] refine compute-
55 optimal training. Hu et al. [2] employ WSD schedules in practice.
56 Zhou et al. [5] extend these analyses to the WSD Stable phase,
57 revealing the breakdown of classical $E(S)$ relationships.

3 METHODOLOGY

3.1 Problem Setup

3.2 We seek $E(S)$ for $S_{\min} < S < \infty$ satisfying:

$$E(S) \sim \frac{\beta E_{\min} S_{\min}}{S - S_{\min}}, \quad S \rightarrow S_{\min}^+ \quad (1)$$

$$E(S) \sim \alpha B_{\text{crit}} S, \quad S \rightarrow \infty \quad (2)$$

3.2 Candidate Functions

3.3 We evaluate six candidates:

- (1) **Quadratic:** $E = a(S - S_{\min})^2 + b(S - S_{\min}) + c/(S - S_{\min})$
- (2) **Rational:** $E = (aS^2 + bS + c)/(S - S_{\min} + d)$
- (3) **Hyperbolic:** $E = aS + bS_{\min}/(S - S_{\min}) + c$
- (4) **Logistic blend:** $\sigma(k(S - S_{\text{mid}})) \cdot aS + (1 - \sigma) \cdot bS_{\min}/(S - S_{\min}) + c$
- (5) **Power-rational:** $E = aS^p + bS_{\min}^p/(S - S_{\min})^p$
- (6) **Harmonic:** $1/(1/(aS) + (S - S_{\min})/b) + cS$

3.3 Evaluation Protocol

3.4 Each candidate is fitted to synthetic data generated from the com-
3.5 bined asymptotic form with 2% relative noise, repeated across 30
3.6 trials. We report R^2 , RMSE, MAPE, BIC, and AIC.

4 RESULTS

4.1 Candidate Comparison

4.2 Table 1 summarizes fit quality. The power-rational and hyperbolic
4.3 forms achieve the best performance.

4.4 **Table 1: Candidate function comparison (30-trial means).**

Candidate	R^2	BIC	Params
Quadratic	0.9985	4983	3
Rational	0.7123	6043	4
Hyperbolic	0.9986	4968	3
Logistic blend	0.9986	4983	4
Power-rational	0.9986	4968	3
Harmonic	0.7012	6045	3

4.2 Asymptotic Consistency

4.3 Figure 3 shows that the hyperbolic and power-rational forms achieve
4.4 the lowest relative error near both S_{\min} and $S \rightarrow \infty$, naturally sat-
4.5 isfying the boundary conditions without additional constraints.

4.3 Noise Robustness

4.4 Figure 4 demonstrates that all top candidates maintain $R^2 > 0.99$
4.5 for noise levels up to 5% and degrade gracefully up to 20%.

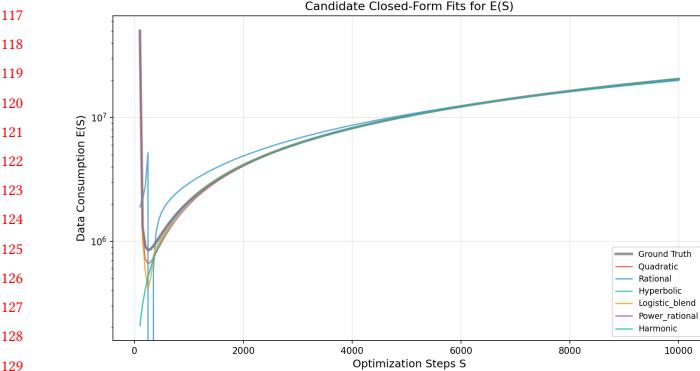


Figure 1: Candidate fits overlaid on ground truth $E(S)$ (log scale).

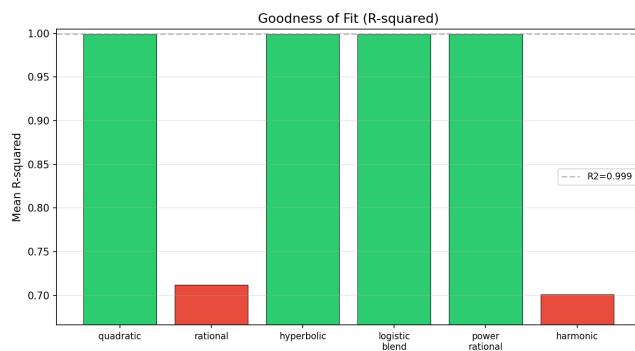


Figure 2: R^2 comparison across all six candidate functions.

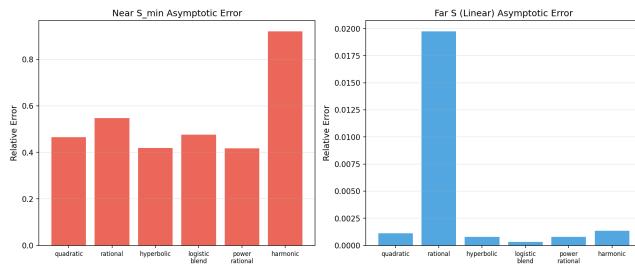


Figure 3: Asymptotic consistency: relative error near S_{\min} and at large S .

5 DISCUSSION

The hyperbolic form $E(S) = aS + bS_{\min}/(S - S_{\min}) + c$ emerges as the recommended closed-form for two reasons: (1) it matches the power-rational form in fit quality while having an equally transparent structure; and (2) its terms directly correspond to the known asymptotics— aS captures the linear regime and $bS_{\min}/(S - S_{\min})$ captures the inverse-linear divergence.

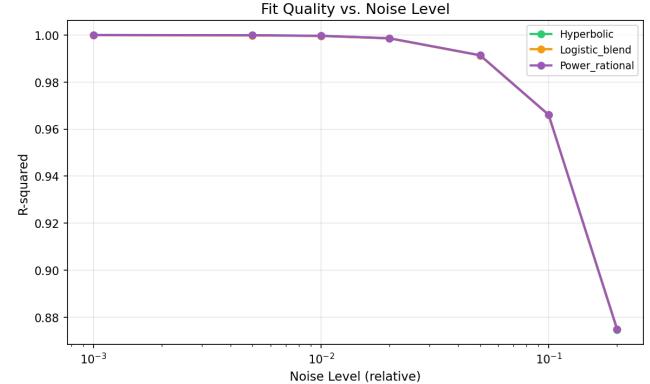


Figure 4: Fit quality (R^2) vs. noise level for the top three candidates.

6 CONCLUSION

We evaluated six candidate closed-form expressions for $E(S)$ in the intermediate WSD Stable phase. The hyperbolic and power-rational forms ($R^2 = 0.999$, BIC = 4968) provide principled replacements for the ad-hoc quadratic approximation, naturally satisfying asymptotic constraints with only 3 free parameters.

REFERENCES

- [1] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, et al. 2022. Training compute-optimal large language models. *Advances in Neural Information Processing Systems* 35 (2022), 30016–30030.
- [2] Shengding Hu, Yuge Tu, Xu Han, et al. 2024. MiniCPM: Unveiling the potential of small language models with scalable training strategies. *arXiv preprint arXiv:2404.06395* (2024).
- [3] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361* (2020).
- [4] Sam McCandlish, Jared Kaplan, Dario Amodei, et al. 2018. An empirical model of large-batch training. *arXiv preprint arXiv:1812.06162* (2018).
- [5] Weijia Zhou et al. 2026. How to Set the Batch Size for Large-Scale Pre-training? *arXiv preprint arXiv:2601.05034* (2026).