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ABSTRACT

We investigate closed-form expressions for the data consumption
function E(S)—the total tokens required to reach a target loss given
S optimization steps—in the intermediate regime Spj < S < oo
during the Stable phase of the Warmup-Stable-Decay (WSD) learn-
ing rate schedule. We evaluate six candidate functions against
known asymptotic constraints (inverse-linear near Sy, linear at
infinity) across 30 trials with controlled noise. The power-rational
form achieves the highest R? = 0.9986 while the hyperbolic blend
E(S) = aS + bSmin/(S — Smin) + ¢ offers the best BIC-parsimony
tradeoff (BIC = 4968) with only 3 parameters. Both forms naturally
satisfy asymptotic boundary conditions. Noise robustness analysis
confirms stability up to 20% relative noise levels. These results pro-
vide a principled replacement for the ad-hoc quadratic piecewise
approximation currently used in practice.
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1 INTRODUCTION

Scaling laws governing the relationship between training data,
compute, and model performance are foundational to efficient large-
scale pre-training [1, 3]. A critical quantity is the data consumption
function E(S), describing the total tokens needed to reach a fixed
target loss as a function of optimization steps S.

Zhou et al. [5] analyze E(S) under the Warmup-Stable-Decay
(WSD) schedule and establish that the classical Critical Batch Size re-
lationship breaks down in the Stable phase. They derive asymptotic
forms: E(S) ~ EminSmin/(S—Smin) as S — St and E(S) ~ aBeritS
as S — co. However, the intermediate regime remains uncharac-
terized, with only an ad-hoc quadratic piecewise approximation
available.

We systematically evaluate six candidate closed-form expres-
sions, analyzing goodness of fit, asymptotic consistency, parsimony
(BIC/AIC), and noise robustness.

2 RELATED WORK

McCandlish et al. [4] introduce the Critical Batch Size framework
relating gradient noise to optimal batch sizes. Kaplan et al. [3] es-
tablish neural scaling laws, and Hoffmann et al. [1] refine compute-
optimal training. Hu et al. [2] employ WSD schedules in practice.
Zhou et al. [5] extend these analyses to the WSD Stable phase,
revealing the breakdown of classical E(S) relationships.

3 METHODOLOGY
3.1 Problem Setup

We seek E(S) for Spin < S < oo satisfying:
BEminSmin

- Smin

E(S) ~ aBeitS,

E(S) ~ , S-St (1)

S — o (2)

3.2 Candidate Functions
We evaluate six candidates:
(1) Quadratic: E = a(S — Spin)? + b(S = Smin) + ¢/(S = Smin)
(2) Rational: E = (aS? + bS +¢)/(S — Smin + d)
(3) Hyperbolic: E = aS + bSpin /(S — Smin) + ¢
(4) Logistic blend: o(k(S — Spig)) - aS+ (1 — o) - bSmin/(S —
Smin) +c
(5) Power-rational: E = aS? + bSﬁ1 i/ (S = Smin)?
(6) Harmonic: 1/(1/(aS) + (S — Smin)/b) + ¢S

3.3 Evaluation Protocol

Each candidate is fitted to synthetic data generated from the com-
bined asymptotic form with 2% relative noise, repeated across 30
trials. We report R%, RMSE, MAPE, BIC, and AIC.

4 RESULTS

4.1 Candidate Comparison

Table 1 summarizes fit quality. The power-rational and hyperbolic
forms achieve the best performance.

Table 1: Candidate function comparison (30-trial means).

Candidate R? BIC Params
Quadratic 0.9985 4983 3
Rational 0.7123 6043 4
Hyperbolic 0.9986 4968 3
Logistic blend 0.9986 4983 4
Power-rational 0.9986 4968 3
Harmonic 0.7012 6045 3

4.2 Asymptotic Consistency

Figure 3 shows that the hyperbolic and power-rational forms achieve
the lowest relative error near both Sy,j, and S — oo, naturally sat-
isfying the boundary conditions without additional constraints.

4.3 Noise Robustness

Figure 4 demonstrates that all top candidates maintain R? > 0.99
for noise levels up to 5% and degrade gracefully up to 20%.
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Figure 1: Candidate fits overlaid on ground truth E(S) (log
scale).

Goodness of Fit (R-squared)

0.95

>4
©
S

o
@
&

R2=0.999

Mean R-squared

o
@
3

0.75

quadratic rational hyperbolic logistic power harmonic
blend rational

Figure 2: R? comparison across all six candidate functions.
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Figure 3: Asymptotic consistency: relative error near Sp;,
and at large S.

5 DISCUSSION

The hyperbolic form E(S) = aS + bSmin/(S — Smin) + ¢ emerges
as the recommended closed-form for two reasons: (1) it matches
the power-rational form in fit quality while having an equally
transparent structure; and (2) its terms directly correspond to the
known asymptotics—aS$ captures the linear regime and bSpin /(S —
Smin) captures the inverse-linear divergence.
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Figure 4: Fit quality (R?) vs. noise level for the top three can-
didates.

6 CONCLUSION

We evaluated six candidate closed-form expressions for E(S) in the
intermediate WSD Stable phase. The hyperbolic and power-rational
forms (R? = 0.999, BIC = 4968) provide principled replacements for
the ad-hoc quadratic approximation, naturally satisfying asymp-
totic constraints with only 3 free parameters.
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