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Characterizing Data Consumption E(S)
in the Intermediate Regime

A rigorous evaluation of closed-form expressions
for the WSD Stable Phase.

(WSD Schedules) (Scaling Law;:} ’(Optimizationﬁi}




Executive Summary

We found a principled replacement for the
ad-hoc quadratic approximation. -
The ‘Intermediate Regime' of WSD training (where S is between mini- R-Squared Accuracy

mum steps and infinity) currently lacks a derived formula for data consum-
ption. This forces engineers to rely on messy piecewise approximations.

After evaluating six candidate functions against asymptotic constraints
and noise, the Hyperbolic Blend emerges as the optimal model.

BIC Score - Lowest Complexity

Recommendation: Adopt the Hyperbolic form:

E(S) =aS + + C
S - Smin

Noise Robustness




Classical Critical Batch Size relationships break down in the WSD Stable Phase.

Learning Rate Schedule

Stable
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FOCUS AREA: Intermediate Regime

Learning Rate

Training Steps

Context: The Warmup-Stable-Decay (WSD) schedule is standard for modern LLM
pre-training.

Problem: Zhou et al. [5] established that while we understand the edges of the
curve (Warmup and Decay), the classical scaling relationships do not hold during
the Stable phase.



The Data Consumption Function E(S) dictates training
efficiency.

Inefficient: Needs Inefficient: Linear
massive data if scaling cost
steps are too few

E(S) = Total tokens required
to reach a target loss.

Constraint: Given fixed
optimization steps S.

The Engineering Question:
“How much data do | need to
process if | am constrained to
S steps?”

Data Needed (E)

Optimal
Compute
Efficiency

A1 E

Source: Based on scaling laws by Kaplan et al. [3]. Optimization Steps (S)



The “Intermediate Regime” has remained mathematically uncharacterized

Known Region:

Infinity 2

Known Region: The Gap:
Near Spin Intermediate Regime

\ (Spin < S < x)
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Linear Scaling
E(S)~S

Current Practice:

Data Needed (E)

Ad-hoc quadratic piece-
| wise approximation
Inverse-Linear Scaling (No theoretical basis).

E(S) ~1/(S — Smin)

Optimization Steps (S)



Evaluating candidates through synthetic generation and stress testing.

I,

Synthetic Data
Generation

Based on known
asymptotic forms
(Eq 1 & Eq 2).

i

Noise Injection

Tests at 2% baseline,
stress tests up to 20%
relative noise.

o

The Tournament

Fit 6 candidate
functions across 30
repeated trials.

Evaluation Metrics: R-Squared, RMSE, MAPE, BIC (Bayesian Info Criterion), AIC.



Six closed-form candidates were evaluated.

1. Quadratic 4. Logistic Blend
E = a(S - Sy, + b(S - Sy,) + 5 _"S ~ | E = signa(.) * aS + (1 - signa) (..
2. Rational 5. Power-Rational

aS? + bS + ¢ bxS,P

E = E = aSP + mn

S-S, +d (S = Syl

3. Hyperbolic (Protagonist) 6. Harmonic
E oy G, E = - cS

+
S - Smin 1/35 + (S-Smin)/b



Rigorous Editorial

Visualizing the fit against Ground Truth.
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Round 1: Rational and Harmonic forms fail to capture
the data structure.

Eliminated: Rational (R? ~ 0.71)
& Harmonic (R? ~ 0.70)
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Rigorous Editorial



Round 2: Hyperbolic and Power-Rational forms offer
consistent boundary behavior.

% Near S_min Asymptotic Error Far S (Linear) Asymptotic Error
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Near S_min: Harmonic fails. Hyperbolic & Far S: Rational fails massively.
Power-Rational low error. Hyperbolic & Power-Rational lowest error.

We require a model that naturally satisfies edges without forcing.




Round 3: Top candidates maintain stability up to 20%

relative noise.

.00 @ -9 ——

.99
.98

i Stable at low noise

.96 (R*2 = 1.0)
.95 -

.94 -
73
-7
.91
.90
9% -
.88

R-squared
o0 O 00 00 0 00 00 00 00 0 0 00O k=

87 e i |
10-3 10-2

Noise Level (relative)

Real-world training data is noisy. The model must be robust.
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degradation
at 20% noise
(R*2 ~ 0.88)




Round 4: Simplicity breaks the tie (Occam’s Razor).

High BIC Quadratic Logistic Blend
(Worse) BIC = 4983 BIC = 4983
Hyperbolic
Low BIC BIC = 4968
(Better) Power-Rational
BIC = 4968
| | I
3 Parameters (Simple) 4 Parameters (Complex)
JetBrains Mono JetBrains Mono

Logistic Blend eliminated due to unnecessary complexity.



The Final Verdict: Hyperbolic vs. Power-Rational.

Power-Rational Form

RA2: 0.9986
BIC: 4968

Con: Relies on abstract
exponent ‘p’. Harder to
Interpret physically.

Hyperbolic Form

RA2: 0.9986

BIC; 4968
WINNER

Pro: Structural Transparency.
Terms map directly to
scaling laws.




Deconstructing the Hyperbolic Solution

Linear Regime: Captures

behavior at large S
(matches alpha * B_crit * S). \
b *x S min

E(S)=GS+S——Smin+C

\ Divergence Regime:
| Captures inverse-linear

explosion near S_min.

“ Constant Offset. |



Statistical Performance Summary (30-Trial Means).

Candidate

Quadratic 0.9985
Rational 0.7123
Hyperbolic 0.9986

Logistic Blend 0.9986
Power-Rational 0.9986
Harmonic 0.7012
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Conclusion & Recommendation.

We evaluated six forms for the WSD Stable phase intermediate regime.
Result: The Hyperbolic form matches the best fits in accuracy (R? > 0.99)
while maintaining structural simplicity (3 params).

Action: Replace the current ad-hoc quadratic piecewise approximation
with the Hyperbolic form.

Benefit: A principled, closed-form basis for scaling laws that naturally
satisfies asymptotic constraints.



References

1.

Hoffmann et al. (2022) - "Training compute-optimal large
language models."

Hu et al. (2024) - "MiniCPM: Unveiling the potential of small
language models..."

Kaplan et al. (2020) - "Scaling laws for neural language models.
McCandlish et al. (2018) - "An empirical model of large-batch
training."

Zhou et al. (2026) - "How to Set the Batch Size for Large-Scale
Pre-training?"



