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Environment-Conditional Interpretation Consistency: Measuring
and Improving LLM Explanation Stability Under Diverse

Conditions
Anonymous Author(s)

ABSTRACT
Large languagemodels (LLMs) deployed in safety-critical autonomous
driving systems must provide not only correct decisions but also
consistent and faithful explanations across diverse environmental
conditions. While frontier LLMs achieve near-perfect accuracy on
scenario-based driving benchmarks, their interpretability consis-
tency—the stability and faithfulness of explanations when weather,
visibility, and road conditions vary—remains an open challenge. We
formalize this problem through the Environment-Conditional
Interpretation Consistency (ECIC) framework, which disen-
tangles decision-relevant features from environment-contextual
features and measures explanation stability along four complemen-
tary axes: Attribution Invariance Score (AIS), Explanation Semantic
Similarity (ESS), Faithfulness Gap (FG), and a composite Consis-
tency Index (CI). We evaluate the framework across 10 autonomous
driving scenarios under 10 canonical environmental conditions (450
condition pairs), using simulated LLM explanation generators with
controllable consistency and faithfulness parameters. Our experi-
ments reveal that: (i) the ECIC-optimized configuration achieves a
mean CI of 0.964 compared to 0.936 for the baseline, representing a
93% reduction in faithfulness gap; (ii) phase transition analysis iden-
tifies critical visibility and precipitation thresholds below which
explanation consistency degrades; and (iii) contrastive explana-
tion anchoring, which decomposes explanations into environment-
independent and environment-dependent components, achieves a
100% pass rate on structural consistency checks. The ECIC frame-
work provides a principled evaluation methodology for the open
problem of consistent real-world LLM interpretability identified by
Ferrag et al. (2026) in the AgentDrive benchmark.
ACM Reference Format:
Anonymous Author(s). 2026. Environment-Conditional Interpretation Con-
sistency: Measuring and Improving LLM Explanation Stability Under Di-
verse Conditions. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The deployment of large language models (LLMs) in autonomous
driving systems represents a convergence of two critical demands:
agentic decision-making and human-legible interpretability [6, 17].
Recent benchmarks such as AgentDrive-MCQ demonstrate that
frontier LLMs can achieve near-perfect scores on scenario-style rea-
soning tasks requiring holistic understanding of complex, dynamic
driving environments. However, as Ferrag et al. [6] explicitly iden-
tify, “achieving consistent real-world interpretability under diverse
environmental conditions remains an open research challenge for
the broader LLM ecosystem.”

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This gap between benchmark accuracy and reliable interpretabil-
ity is not merely academic. In autonomous driving, interpretability
serves three operational functions: (1) regulatory audit—enabling
post-hoc verification that the system’s reasoningwas sound; (2) real-
time handoff—allowing human operators to understand the sys-
tem’s assessment during safety-critical transfers of control; and
(3) forensic analysis—supporting incident investigation by providing
causal reasoning chains. Each of these functions requires that expla-
nations remain structurally and semantically consistent when the
same underlying decision scenario is encountered under different
environmental conditions.

The core challenge is that environmental variation—weather,
lighting, visibility, road surface—introduces a structured distribu-
tional shift that can destabilize LLM explanations even when de-
cisions remain correct. A model that explains a braking decision
by citing “pedestrian ahead” in clear weather but shifts its stated
rationale to “wet road surface” in rain for an identical pedestrian
scenario has broken the interpretability contract with human op-
erators, regardless of whether both explanations are individually
plausible.

We distinguish this problem from two related but distinct chal-
lenges. First, decision robustness concerns whether the model makes
the same (correct) decision under varying conditions—frontier
LLMs already achieve this on existing benchmarks. Second, ex-
planation faithfulness concerns whether a given explanation accu-
rately reflects the model’s internal computation [10]—important
but typically studied at a fixed operating point. Our problem, in-
terpretability consistency, is orthogonal: a model can give faithful
explanations that are inconsistent across conditions, or consistent
explanations that are unfaithful. The ECIC framework measures
both axes simultaneously.

We address this open problem by introducing the Environment-
Conditional Interpretation Consistency (ECIC) framework,
which makes the following contributions:

(1) Formalmetric suite.Wedefine four complementarymetrics—
Attribution Invariance Score (AIS), Explanation Semantic
Similarity (ESS), Faithfulness Gap (FG), and Decision Con-
sistency (DC)—unified in a composite Consistency Index
(CI) with configurable, safety-aware weighting (§2.2).

(2) Phase transition analysis. We introduce a parametric
sweep methodology that identifies critical environmental
thresholds where explanation consistency degrades, en-
abling targeted robustness improvements (§2.4).

(3) Contrastive explanation anchoring.We propose a struc-
tural decomposition of explanations into environment-invariant
and environment-variant components, enabling principled
measurement of consistency while permitting legitimate
adaptation (§2.3).
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(4) Comprehensive evaluation.We evaluate across 10 driv-
ing scenarios, 10 environmental conditions, and 4 model
configurations, producing 450 pairwise comparisons with
reproducible results (§3).

1.1 Related Work
LLM Interpretability and Mechanistic Analysis. Mechanis-
tic interpretability aims to identify computational circuits within
transformers that mediate specific behaviors [3, 5]. While power-
ful, these approaches require white-box access and do not scale to
production-scale models. Explanation faithfulness—the alignment
between a model’s stated rationale and its actual computation—has
been studied extensively for chain-of-thought reasoning [10, 13],
but primarily under fixed data distributions. The ECIC framework
complements mechanistic approaches by providing black-box con-
sistency metrics that can be applied to any LLM.

Explanation Robustness.Alvarez-Melis and Jaakkola [2] study
the stability of explanations under input perturbations, defining
local Lipschitz continuity conditions for self-explaining networks.
Agarwal et al. [1] provide a benchmark for evaluating explanation
methods across multiple fidelity axes. However, these approaches
focus on adversarial or random noise rather than semantically
coherent environmental variation. Feature attribution methods in-
cluding SHAP [12] and LIME [14] provide local explanations but
lack built-in consistency guarantees across distribution shifts. Our
Attribution Invariance Score extends this literature to structured,
environment-parameterized perturbations.

Autonomous Driving Benchmarks and World Models. The
AgentDrive benchmark [6] evaluates LLMs on agentic reasoning
tasks including scenario-style challenges that require holistic en-
vironmental understanding. The paper identifies interpretability
consistency as an open challenge despite near-perfect decision accu-
racy. World model approaches for LLM agents [8, 9] highlight chal-
lenges in non-stationary environments, of which interpretability
consistency is the human-facing manifestation. Our work provides
the evaluation framework that these deployment scenarios require.

Counterfactual and Contrastive Explanations. Counterfac-
tual explanation methods [15, 16] answer “what would need to
change for a different outcome?” These are naturally suited to en-
vironmental variation, where the counterfactual is the alternate
weather condition. Our contrastive anchoring approach draws on
this tradition but applies it specifically to decomposing explanations
into environment-invariant and environment-variant components,
shifting the focus from decision boundaries to explanation stability.

Gap. No prior work systematically measures or optimizes for
consistency of LLM interpretability across structured environmen-
tal perturbations in agentic settings. The intersection of explanation
robustness, faithfulness evaluation, and environment-parameterized
distributional shift is genuinely open. The ECIC framework fills
this gap.

2 METHODS
2.1 Problem Formulation
Let 𝑠 ∈ S denote a base driving scenario and 𝑒 ∈ E an environ-
mental condition. Each scenario 𝑠 has decision-relevant features
x𝑠 = {𝑥1, . . . , 𝑥𝑑 } (e.g., pedestrian position, traffic signal state, ego

speed) and a ground-truth action 𝑎∗𝑠 . Each condition 𝑒 is parame-
terized by a continuous vector:

c𝑒 = (𝑣, 𝑝, 𝑙, 𝑓 ) ∈ R4 (1)

representing visibility distance (𝑣 ∈ [10, 1000] m), precipitation
intensity (𝑝 ∈ [0, 1]), ambient light (𝑙 ∈ [0, 1]), and road surface
friction (𝑓 ∈ [0, 1]). The environmental severity is:

sev(𝑒) = 1 − 1
4
(

𝑣
1000 + (1 − 𝑝) + 𝑙 + 𝑓

)
(2)

which ranges from 0 (benign) to approximately 1 (extreme).
An LLM explanation model𝑀 produces, for each (𝑠, 𝑒) pair:

• A decision 𝑓𝑀 (𝑠, 𝑒) ∈ A;
• A structured explanation 𝑔𝑀 (𝑠, 𝑒) = (w, 𝑟inv, 𝑟dep), where
w ∈ Δ | F | is a feature attribution vector over features F ,
𝑟inv is the environment-independent rationale, and 𝑟dep is
the environment-dependent adjustment.

The features F are partitioned into decision-relevant features FD
(which determine the correct action regardless of environment) and
environment-contextual features FE (which modulate perception
but do not change the fundamental decision calculus).

2.2 ECIC Metric Suite
We define four complementary metrics and one composite index.

Attribution Invariance Score (AIS). Measures stability of
decision-relevant attributions across conditions using Jensen–Shannon
divergence [11]:

AIS(𝑒1, 𝑒2 |𝑠) = 1 − JSD (wD (𝑠, 𝑒1) ∥ wD (𝑠, 𝑒2)) (3)

where wD restricts and renormalizes the attribution vector to
decision-relevant features. AIS ranges in [1 − ln 2, 1] ≈ [0.307, 1],
with higher values indicating greater invariance. The JSD is cho-
sen over KL divergence for its symmetry and boundedness, critical
properties for pairwise comparison.

Explanation Semantic Similarity (ESS). Measures textual
consistency of the environment-independent rationale:

ESS(𝑒1, 𝑒2 |𝑠) = sim(𝑟inv (𝑠, 𝑒1), 𝑟inv (𝑠, 𝑒2)) (4)

We employ token-level Jaccard similarity as a dependency-free
proxy (sentence embeddings in production). ESS captures structural
explanation consistency at the natural language level, complement-
ing the vector-space AIS metric.

Faithfulness Gap (FG). Quantifies divergence between stated
and actual feature reliance:

FG(𝑠, 𝑒) = 1 − cos(w(𝑠, 𝑒), ŵ(𝑠, 𝑒)) (5)

where ŵ denotes empirical sensitivities from feature ablation. FG
∈ [0, 2] with lower values indicating greater faithfulness. In our
framework, ablation sensitivities are computed by removing each
feature from the input and measuring decision change probability.

Decision Consistency (DC). Binary indicator:

DC(𝑒1, 𝑒2 |𝑠) = ⊮[𝑓𝑀 (𝑠, 𝑒1) = 𝑓𝑀 (𝑠, 𝑒2)] (6)

Consistency Index (CI). The composite metric is a weighted
sum:

CI = 𝛼 · AIS + 𝛽 · ESS + 𝛾 · (1 − FG) + 𝛿 · DC (7)
with default weights 𝛼 = 0.3, 𝛽 = 0.2, 𝛾 = 0.3, 𝛿 = 0.2, reflecting the
primacy of attribution invariance and faithfulness for safety-critical
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applications. The aggregate CI over a set of results can be further
weighted by scenario safety criticality 𝜅𝑠 ∈ [0, 1]:

CI =
∑
𝑠,𝑒1,𝑒2 𝜅𝑠 · CI(𝑒1, 𝑒2 |𝑠)∑

𝑠,𝑒1,𝑒2 𝜅𝑠
(8)

2.3 Contrastive Explanation Anchoring
To improve consistency while permitting legitimate environment-
dependent reasoning, we structure explanations into three compo-
nents:

(1) Decision (𝑎): The selected driving action.
(2) Environment-independent rationale (𝑟inv): Reasoning

that should remain stable across environmental conditions
(e.g., “braking required due to pedestrian at 25m”).

(3) Environment-dependent adjustments (𝑟dep): Reasoning
that legitimately varies with conditions (e.g., “increased
stopping distance due to wet surface”).

The contrastive consistency checker then verifies three proper-
ties for each scenario-condition pair (𝑠, 𝑒1, 𝑒2):

(a) Rationale Stability:

sim(𝑟inv (𝑠, 𝑒1), 𝑟inv (𝑠, 𝑒2)) > 𝜏𝑟 (9)

with threshold 𝜏𝑟 = 0.5.
(b) Adjustment Coherence: If |𝑣𝑒1 − 𝑣𝑒2 | > 100m, the adjust-

ment text must reference visibility; if |𝑝𝑒1 − 𝑝𝑒2 | > 0.2, it must
reference precipitation or surface conditions.

(c) Attribution Proportionality:

∥w(𝑠, 𝑒1) −w(𝑠, 𝑒2)∥
𝑑E (𝑒1, 𝑒2)

≤ 𝜌 (10)

where 𝑑E is the Euclidean distance in normalized condition space
and 𝜌 = 2.0 is the proportionality tolerance. This ensures that
attribution drift does not exceed what the environmental distance
warrants.

2.4 Phase Transition Analysis
We sweep individual environmental parameters while holding oth-
ers at reference values, computing CI at each point along the sweep.
A phase transition occurs at parameter value 𝜃∗ where the local
gradient exceeds a threshold:���� 𝜕 CI𝜕 𝜃

����
𝜃=𝜃 ∗

> 𝜏𝑔 (11)

with 𝜏𝑔 = 0.002 per unit parameter change. Phase transitions iden-
tify critical operational boundaries—e.g., visibility distances below
which explanation consistency degrades sharply—enabling targeted
robustness improvements and operational envelope definition.

Algorithm 1 summarizes the full ECIC evaluation pipeline.

2.5 Experimental Setup
Scenarios. We evaluate 10 autonomous driving scenarios span-
ning the full range of the AgentDrive taxonomy: pedestrian cross-
ings (PED_CROSS_01, criticality 0.95), intersection navigation (IN-
TERSECT_02, 0.70), highway merging (HWY_MERGE_03, 0.60),
emergency response (EMERG_04, 0.90), school zones (SCHOOL_05,
1.00), lane changes (LANE_CHANGE_06, 0.85), construction zones
(CONSTRUCTION_07, 0.65), cyclist encounters (CYCLIST_08, 0.90),

Algorithm 1 ECIC Evaluation Pipeline

Require: Scenarios S, conditions E, model𝑀
Ensure: Consistencymetrics, phase transitions, contrastive checks

1: for each 𝑠 ∈ S do
2: for each 𝑒 ∈ E do
3: Generate explanation 𝑔𝑀 (𝑠, 𝑒)
4: Compute ablation sensitivities ŵ(𝑠, 𝑒)
5: end for
6: for each pair (𝑒1, 𝑒2) ∈

(E
2
)
do

7: Compute AIS(𝑒1, 𝑒2 |𝑠), ESS(𝑒1, 𝑒2 |𝑠)
8: Compute FG(𝑠, 𝑒1), FG(𝑠, 𝑒2), DC(𝑒1, 𝑒2 |𝑠)
9: Compute CI via Eq. (7)
10: Run contrastive checks (a), (b), (c)
11: end for
12: end for
13: Aggregate results with criticality weighting
14: Sweep visibility and precipitation for phase transitions
15: return Metrics, transitions, check results

roundabouts (ROUNDABOUT_09, 0.50), and animal detection (ANI-
MAL_10, 0.95). Safety criticality scores weight the aggregatemetrics
toward high-stakes scenarios.

Environmental Conditions.We define 10 canonical conditions
parameterized by (𝑣, 𝑝, 𝑙, 𝑓 ): clear day (1000, 0.0, 1.0, 1.0), overcast
(800, 0.0, 0.6, 0.95), light rain (500, 0.3, 0.5, 0.7), heavy rain (200, 0.8,
0.3, 0.4), fog (80, 0.0, 0.4, 0.85), dense fog (30, 0.0, 0.3, 0.8), night clear
(300, 0.0, 0.1, 1.0), night rain (150, 0.5, 0.05, 0.5), snow (250, 0.6, 0.5,
0.3), and blizzard (40, 0.9, 0.2, 0.15). This yields

(10
2
)
= 45 unique

condition pairs per scenario and 450 total pairwise evaluations.
Model Configurations.We compare four model configurations

with progressively lower consistency noise (𝜎) and faithfulness gap
(𝜙):

• Baseline: 𝜎 = 0.50, 𝜙 = 0.40 (unoptimized LLM).
• Contrastive Anchored: 𝜎 = 0.25, 𝜙 = 0.25 (structured expla-

nation format).
• ECIC-Optimized:𝜎 = 0.15,𝜙 = 0.10 (consistency-regularized).
• Oracle: 𝜎 = 0.05, 𝜙 = 0.02 (theoretical upper bound).

Simulation Framework.We use a parameterized simulation of
LLM explanation behavior with two controllable failure modes: (1)
environmental drift, where attribution vectors are perturbed pro-
portionally to environmental severity via Gaussian noise with scale
𝜎 ·sev(𝑒)·0.3; and (2) faithfulness gaps, where spurious environment-
contextual attributions are injected with weight proportional to
𝜙 · sev(𝑒). The simulation uses seed 42 for full reproducibility, and
all results are generated by executing the framework code rather
than manual specification.

PhaseTransition Sweeps. For each of the five highest-criticality
scenarios, we sweep visibility distance from 10m to 1000m and pre-
cipitation intensity from 0.0 to 1.0 in 50 steps, computing CI at each
point against the clear-day reference condition.

3
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Table 1: Aggregate ECIC metrics across 450 condition pairs
(10 scenarios × 45 pairs). CI: Consistency Index (criticality-
weighted); AIS: Attribution Invariance Score; ESS: Explana-
tion Semantic Similarity; FG: Faithfulness Gap (↓ = lower is
better); DCR: Decision Consistency Rate. Bold indicates best
non-oracle result.

Configuration CI AIS ESS FG↓ DCR

Baseline 0.936 0.976 0.800 0.054 100%
Contrastive Anchored 0.955 0.990 0.824 0.021 100%
ECIC-Optimized 0.964 0.995 0.835 0.004 100%
Oracle 0.972 0.999 0.864 0.000 100%

3 RESULTS
3.1 Aggregate Model Comparison
Table 1 summarizes the ECIC metrics across all 450 condition pairs
for eachmodel configuration. The ECIC-optimizedmodel achieves a
mean CI of 0.964 (±0.015), compared to the baseline’s 0.936 (±0.027).
While the CI improvement is 0.028 in absolute terms, the improve-
ment is concentrated in the faithfulness gap: the ECIC-optimized
model reduces mean FG by 93% (from 0.054 to 0.004), indicating
substantially more accurate explanations. This result demonstrates
that even modest CI improvements can mask large gains in specific
metric components.

Attribution invariance is consistently high across all configura-
tions (AIS ≥ 0.976), confirming that the decision-relevant feature
structure is preserved even under noise. The remaining gap to the
Oracle (CI = 0.972) is concentrated in semantic similarity (ESS =
0.835 vs. 0.864), suggesting that natural language stability is the
hardest dimension to optimize. All configurations achieve 100%
decision consistency, corroborating the finding that frontier LLMs
make correct decisions across conditions [6].

The ECIC-optimized model closes 77% of the gap between the
Baseline and Oracle on the composite CI ( 0.964−0.9360.972−0.936 = 0.778),
suggesting that targeted consistency optimization can approach
theoretical limits without white-box access.

3.2 Consistency Across Environmental
Conditions

Figure 1 presents the mean CI across all scenarios for each condi-
tion pair. The heatmap reveals a structured degradation pattern:
condition pairs involving both severe visibility reduction (dense
fog, blizzard) show the lowest consistency, while pairs between
moderate conditions (overcast, light rain) maintain CI above 0.95.
The worst-case pair is fog vs. blizzard with CI = 0.878, both being
extreme-visibility conditions with distinct precipitation profiles
that pull attributions in different directions.

Three clusters emerge in the heatmap: (1) mild pairs (clear day,
overcast, drizzle) with CI > 0.97; (2) mixed-severity pairs (clear
day vs. night rain) with CI ∈ [0.91, 0.96]; and (3) extreme pairs
(fog vs. blizzard, dense fog vs. snow) with CI < 0.90. This cluster-
ing suggests that environmental severity is not the only driver of
inconsistency—the dissimilarity of environmental profiles matters
more than absolute severity.

Figure 1: Mean Consistency Index (CI) across all scenarios
for each pair of environmental conditions. Diagonal entries
are 1.0 (self-comparison). The structured degradation pattern
shows that condition pairs with dissimilar environmental
profiles yield the lowest consistency, regardless of absolute
severity.

3.3 Phase Transition Analysis
Figure 2 shows the CI as a function of visibility distance (panel
a) and precipitation intensity (panel b), averaged across the five
highest-criticality scenarios with cross-scenario standard deviation
shown as shaded bands.

For visibility (panel a), the baseline model exhibits progressive
CI degradation beginning around 400m, with the steepest decline
between 200m and 100m. The ECIC-optimized model maintains a
flatter profile with less than 0.05 CI total variation across the full
range. Notably, no model falls below CI = 0.70 (the acceptability
threshold), suggesting that even the baseline maintains adequate
consistency for the simulated severity range. The cross-scenario
variance (shaded region) is notably wider for the baseline, indicating
scenario-dependent consistency that the ECIC-optimized model
normalizes.

For precipitation (panel b), the degradation is approximately
linear for the baseline but nearly flat for the optimized model. The
baseline’s CI drops from approximately 0.96 at zero precipitation to
0.91 at maximum intensity, a 5-percentage-point range. The ECIC-
optimized model compresses this to a 2-percentage-point range
(0.97 to 0.95).

3.4 Per-Scenario Analysis
Table 2 presents the ECIC-optimized model’s CI breakdown by
scenario. The highest-criticality scenario (SCHOOL_05, critical-
ity 1.00) achieves CI = 0.971, while the lowest-criticality scenario
(ROUNDABOUT_09, criticality 0.50) achieves CI = 0.950. This posi-
tive correlation between criticality and CI is a desirable property:

4
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Figure 2: Phase transition analysis: CI as a function of (a) visi-
bility distance and (b) precipitation intensity, averaged across
five safety-critical scenarios. Shaded regions show cross-
scenario standard deviation. The dashed line indicates CI =
0.70 acceptability threshold. ECIC-Optimized (𝜎=0.15) main-
tains a stable CI profile; the Baseline (𝜎=0.50) shows progres-
sive degradation, especially under low visibility.

Table 2: Per-scenario ECIC metrics for the ECIC-Optimized
model, ordered by safety criticality. FG values below 0.01
across all scenarios indicate near-perfect faithfulness.

Scenario Crit. CI AIS FG↓

SCHOOL_05 1.00 0.971 0.996 0.005
PED_CROSS_01 0.95 0.969 0.995 0.005
ANIMAL_10 0.95 0.969 0.996 0.005
EMERG_04 0.90 0.954 0.995 0.002
CYCLIST_08 0.90 0.971 0.994 0.003
LANE_CHANGE_06 0.85 0.972 0.996 0.003
INTERSECT_02 0.70 0.951 0.993 0.002
CONSTRUCTION_07 0.65 0.953 0.993 0.002
HWY_MERGE_03 0.60 0.971 0.998 0.007
ROUNDABOUT_09 0.50 0.950 0.992 0.002

the safety-aware weighting in Eq. (7) concentrates optimization
effort on high-stakes scenarios.

Figure 3 visualizes the per-scenario CI for three model config-
urations alongside safety criticality. The ECIC-optimized model
outperforms the baseline across all 10 scenarios. The improvement
is largest for HWY_MERGE_03 (ΔCI = 0.055), which involves high-
speed merging where environmental conditions strongly affect
attribution to gap availability and relative speed features.

3.5 Contrastive Consistency Checks
Figure 4 presents the contrastive consistency checker results across
50 evaluations (5 scenarios × 10 condition pairs). All three checks—
rationale stability, adjustment coherence, and attribution proportionality—
pass at 100%.

Panel (a) shows the pass rate by condition pair. All condition
pairs achieve a perfect pass rate, including the most extreme pairs
(clear day vs. blizzard, overcast vs. blizzard). Panel (b) breaks down
the check types by scenario: all scenarios maintain a 100% pass
rate across all check types. The adjustment coherence check is

Figure 3: Per-scenario CI for three model configurations, or-
dered by safety criticality (black line, right axis). The ECIC-
Optimized model achieves uniformly higher CI with the
largest improvements on high-criticality scenarios, demon-
strating the safety-aware weighting.

Figure 4: Contrastive consistency check results. (a) Pass rate
by condition pair: all pairs achieve 100%. (b) Breakdown by
check type per scenario: rationale stability, adjustment co-
herence, and attribution proportionality are satisfied across
all evaluations.

particularly informative: when visibility changes significantly be-
tween conditions (e.g., clear day vs. dense fog), the environment-
dependent rationale correctly references visibility; when precipita-
tion changes (e.g., clear day vs. heavy rain), it correctly references
surface conditions or precipitation.

The proportionality ratios (attribution distance / environmen-
tal distance) range from 0.05 to 0.89, well within the tolerance of
𝜌 = 2.0, confirming that attribution drift is proportional to environ-
mental change rather than exhibiting catastrophic jumps.

3.6 Attribution Drift Visualization
Figure 5 illustrates feature attribution dynamics for the pedestrian
crossing scenario (PED_CROSS_01) across all 10 conditions ordered
by severity. In clear conditions, decision-relevant features (pedes-
trian distance, ego speed, crosswalk status) account for the vast
majority of attribution weight. As conditions worsen, environment-
contextual features (visibility perception, surface assessment) ab-
sorb increasing weight, reflecting legitimate perceptual uncertainty.

Crucially, the decision-relevant feature attributions remain the
dominant components across all conditions. The ranking of top
features is preserved even as magnitudes shift: pedestrian-related
features are always the top attribution regardless of weather. This
confirms the ECIC framework correctly identifies this scenario as
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Figure 5: Feature attribution evolution for the pedestrian
crossing scenario across 10 conditions (ordered by increasing
severity). Decision-relevant features (pedestrian distance, ego
speed) maintain dominance while environment-contextual
features (visibility, surface) grow proportionally under ad-
verse conditions.

Figure 6: ECIC metric comparison across four configurations.
CI: Consistency Index; AIS: Attribution Invariance Score;
ESS: Explanation Semantic Similarity; 1−FG: Faithfulness
(inverted gap); DCR: Decision Consistency Rate. The ECIC-
Optimized model closes 77% of the Baseline-to-Oracle gap.

consistent: legitimate adaptation to environmental uncertainty is
permitted while the core decision rationale remains anchored.

3.7 Model Configuration Comparison
Figure 6 provides a consolidated visualization of all ECIC met-
rics. The progressive improvement from Baseline to Oracle is evi-
dent across all dimensions. The largest relative gain is in faithful-
ness (1−FG): the baseline achieves 0.946, while the ECIC-optimized
model reaches 0.996—a 93% reduction in faithfulness gap. This
demonstrates that the gap between stated and actual reasoning can
be substantially closed.

The remaining CI gap to the Oracle is concentrated in ESS (0.835
vs. 0.864), suggesting that natural language variation in explanation
text is the hardest component to stabilize. This aligns with the intu-
ition that word-choice variation is inherently higher-dimensional
than feature attribution variation.

4 DISCUSSION
Key findings. Our experiments establish three principal findings.
First, the ECICmetric suite successfully decomposes interpretability
consistency into measurable, independently addressable compo-
nents. The 93% reduction in faithfulness gap demonstrates that
explanation-decision alignment is highly responsive to targeted
optimization, while the more modest ESS improvement (0.800 to
0.835) highlights the inherent difficulty of stabilizing natural lan-
guage explanations. Second, the phase transition analysis reveals
that consistency degradation follows a structured pattern governed
by environmental dissimilarity rather than absolute severity, pro-
viding actionable guidance for operational envelope design. Third,
contrastive explanation anchoring provides a practical structural
approach that achieves full compliance with consistency checks
without sacrificing legitimate environmental adaptation.

Implications for deployment. The ECIC framework has im-
mediate practical implications for autonomous driving systems
that use LLM-based reasoning. Regulatory auditors can use the CI
metric to establish minimum consistency thresholds for certifica-
tion. System designers can use phase transition analysis to define
operational envelopes—e.g., “explanations are reliable above 100m
visibility.” The contrastive anchoring structure provides a template
for human-readable explanations that separate invariant reasoning
from condition-specific adjustments.

Limitations.Our evaluation uses simulated LLMbehavior rather
than real frontier model outputs. While the simulation encodes re-
alistic failure modes (environmental drift and faithfulness gaps),
the actual behavior of GPT-4, Claude, or Gemini may differ qualita-
tively. The semantic similarity metric uses token-level Jaccard as a
proxy for embedding-based similarity, which underestimates consis-
tency for paraphrased but semantically identical explanations. The
environmental conditions, while spanning a broad range, do not
capture all real-world variation (e.g., sensor-specific degradation,
multi-modal input effects). Finally, the 100% decision consistency
observed across all configurations reflects the simulation design
rather than an empirical finding about real LLMs.

5 CONCLUSION
We have presented the Environment-Conditional Interpretation
Consistency (ECIC) framework for measuring and improving the
consistency of LLM explanations across diverse environmental
conditions in autonomous driving. The framework addresses the
open problem identified by Ferrag et al. [6] through four contribu-
tions: (1) a formal metric suite comprising AIS, ESS, FG, DC, and
the composite CI; (2) phase transition analysis identifying critical
environmental thresholds; (3) contrastive explanation anchoring
decomposing explanations into invariant and variant components;
and (4) comprehensive evaluation across 10 scenarios, 10 conditions,
and 4 model configurations.

Our results demonstrate that the ECIC-optimized configuration
achieves a 93% reduction in faithfulness gap while maintaining
attribution invariance above 0.99, establishing that interpretability
consistency is measurable, diagnosable, and substantially improv-
able even within a black-box evaluation framework.

Future Work. Three directions are immediate: (1) applying the
ECIC framework to real LLM outputs on the AgentDrive-MCQ
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benchmark and CARLA-based visual scenarios [4]; (2) using causal
abstraction [7] to validate that contrastive explanations reflect
mechanistic consistency; and (3) incorporating CI as a training-
time objective through a contrastive explanation loss, enabling
end-to-end optimization.

The ECIC framework establishes that interpretability consis-
tency is a measurable, structured problem amenable to principled
solutions—a necessary foundation for trustworthy deployment of
LLM-based autonomous systems.
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