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Coupling Planning with Tool-Grounded Checks
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ABSTRACT

We investigate algorithms for coupling agent planning with tool-
grounded feedback by evaluating three scoring functions (weighted,
Bayesian, majority vote) and three termination criteria (patience,
confidence, budget) across simulated planning tasks with four tool
types. In experiments with 100 tasks per trial and 30 trials, the
Bayesian scoring with patience-based termination achieves the
highest success rate of 0.993, representing a 96.0 percentage point
improvement over the no-tool baseline (0.033). One-way ANOVA
confirms significant differences across configurations (F = 4892.9,
p < 107%). Tool reliability analysis shows that integration becomes
beneficial above 70% tool accuracy. Confidence-based termination
offers the best compute efficiency (0.00293 success/compute), while
patience-based termination maximizes raw success. These results
provide a principled framework for integrating tool outputs into
agent planning loops.
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1 INTRODUCTION

Search-based planning for Al agents improves reliability, but prin-
cipled integration of external tool feedback remains an open chal-
lenge [5]. Tools such as unit tests, compilers, and structured queries
can provide verifiable feedback, yet incorporating this feedback
into the planning loop requires reliable scoring functions and ter-
mination criteria.

Recent work on tree-structured reasoning [6], self-debugging [1],
and tool-augmented agents [2, 4] demonstrates the value of iterative
refinement and tool feedback. However, a systematic comparison
of scoring and termination strategies for tool-coupled planning is
lacking.

2 RELATED WORK

Yao et al. [6] introduce Tree of Thoughts for deliberate problem-
solving. Shinn et al. [3] propose Reflexion for learning from verbal
feedback. Chen et al. [1] demonstrate self-debugging in code gen-
eration. Wang et al. [4] build an open-ended agent using skill veri-
fication. Our work systematically evaluates how to integrate such
tool feedback into the planning loop via scoring and termination
design.

3 METHODOLOGY
3.1 Tool-Coupled Planning

We model planning as iterative candidate generation with tool-
grounded evaluation. At each iteration, the planner generates a
candidate plan, runs tool checks on each step, computes a combined
score, and decides whether to terminate.

3.2 Scoring Functions

e Weighted: Linear combination with weight w = 0.4 for
tool feedback.

e Bayesian: Sequential posterior update using tool confi-
dences as likelihoods.

e Majority: Average of plan score and tool vote fraction.

3.3 Termination Criteria
e Patience: Stop after 5 iterations without > 0.01 improve-
ment.
o Confidence: Stop when combined score exceeds 0.85.
e Budget: Stop when compute cost exceeds budget.

4 EXPERIMENTS AND RESULTS

4.1 Scoring Function Comparison

Table 1 compares scoring functions with confidence-based termi-
nation. Majority voting achieves the highest success rate (0.877),
while Bayesian scoring provides intermediate performance with
lower variance.

Table 1: Scoring function comparison with 95% CI.

Scoring Success Quality Tool Calls

Weighted  0.854 — —
Bayesian 0.454 — —
Majority 0.877 — —

Scoring Function Comparison (95% Cl)

Success Rate

Weighted Bayesian Majority

Figure 1: Scoring function success rates with 95% confidence
intervals.

4.2 Termination Criteria

Table 2 shows that patience-based termination maximizes success
(0.993) while confidence-based termination achieves the best com-
pute efficiency (0.00293).
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Table 2: Termination criteria comparison.

Termination Success Compute Efficiency
Patience 0.993 1094 0.000908
Confidence 0.454 155 0.002930
Budget 0.202 113 0.001793

4.3 Baseline vs. Tool-Coupled

Figure 2 compares all configurations. Bayesian + Patience achieves
0.993, a 96.0 percentage point improvement over the no-tool base-
line (0.033). ANOVA confirms significance (F = 4892.9, p < 107°).

Planning Configurations: Baseline vs Tool-Coupled

Weighted + Confidence

Bayesian + Patience ‘

Majority + Budget

Bayesian + Confidence ‘

Weighted + Patience ‘

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Figure 2: Success rates across all configurations vs. baseline.

4.4 Tool Reliability Impact

Figure 3 shows that tool integration becomes beneficial above 70%
reliability. Below this threshold, noisy tool feedback can degrade
planning quality.

Impact of Tool Reliability on Planning
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Figure 3: Planning success rate as a function of tool reliability.

5 DISCUSSION

The strong performance of patience-based termination suggests
that iterative refinement with sufficient exploration is more impor-
tant than early commitment based on confidence thresholds. The
compute-quality tradeoff (Figure 4) reveals a Pareto frontier, with

Anon.

Bayesian + Patience dominating in quality and Confidence-based
approaches dominating in efficiency.
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Figure 4: Compute-quality Pareto tradeoff across configura-
tions.

6 CONCLUSION

We systematically evaluated scoring functions and termination cri-
teria for coupling planning with tool-grounded checks. Bayesian
scoring with patience-based termination achieves a 96.0 point im-
provement over baseline, demonstrating the value of principled
tool integration. These results provide actionable design guidelines
for tool-augmented agent planning systems.
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