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Hierarchical Hindsight Credit Assignment for Long-Horizon
Agentic Reasoning
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ABSTRACT

Large language model (LLM) based agents execute long trajectories
of heterogeneous decisions—token generation, tool invocations,
skill selection, and memory operations—yet receive only sparse,
end-of-episode reward signals. Assigning credit to individual deci-
sions within such trajectories remains an open problem that limits
sample efficiency and cross-task transfer. We propose Hierarchical
Hindsight Credit Assignment (HHCA), a three-level decomposition
that combines (1) token-level micro-credit via attention rollout, (2)
step-level meso-credit via simulated hindsight self-critique, and
(3) episode-level macro-credit via a persistent skill-value memory.
In controlled experiments over 200 synthetic agent trajectories
spanning 10 to 100 steps across five task types, HHCA achieves a
Pearson correlation of 0.4507 with ground-truth credit, compared
to 0.2526 for Outcome-Only and 0.1955 for Attention-Rollout Eli-
gibility Traces. HHCA also exhibits minimal transfer gap (0.0011)
between training and held-out task types and maintains stable ac-
curacy across all horizon lengths. These results demonstrate that
hierarchical credit decomposition substantially improves credit
assignment quality for long-horizon agentic reasoning.
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1 INTRODUCTION

LLM-based agents increasingly tackle complex, multi-step tasks
that require interleaving natural language reasoning with tool in-
vocations, skill dispatches, and memory operations [8, 11]. A single
episode may span tens to hundreds of heterogeneous actions, yet
the primary training signal remains sparse: binary or graded task
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completion at the very end. This creates a fundamental credit as-
signment challenge [7]: which of the many decisions along the
trajectory actually contributed to success or failure?

Classical reinforcement learning offers temporal-difference meth-
ods [6] and eligibility traces [7], but these assume homogeneous
action spaces and struggle with the extreme horizon lengths and
reward sparsity characteristic of agentic settings. Process reward
models [4] provide step-level supervision but require expensive
human annotations and remain task-specific. Attention-based attri-
bution [1, 3] offers an architecture-native credit proxy but conflates
attention with causal contribution.

We propose Hierarchical Hindsight Credit Assignment (HHCA),

a three-level framework that decomposes credit along the natural
hierarchy of agentic decisions. At the micro level, attention roll-
out provides token-level credit within reasoning blocks. At the
meso level, hindsight self-critique assigns step-level credit by re-
evaluating each action conditioned on the episode outcome. At the
macro level, a persistent skill-value memory tracks cross-episode
skill effectiveness, enabling transfer.

We evaluate HHCA on a controlled simulation framework with
200 synthetic agent trajectories across five task types and horizons
ranging from 10 to 100 steps. Our results show that HHCA achieves
a Pearson correlation of 0.4507 with ground-truth credit—a 78.3%
relative improvement over the Outcome-Only baseline (0.2526) and
a 130.5% improvement over Attention-Rollout Eligibility Traces
(0.1955). HHCA also demonstrates strong cross-task transfer with
a gap of only 0.0011 between training and test task sets.

2 RELATED WORK

Classical Credit Assignment. Temporal-difference learning [6]
and eligibility traces [7] provide foundational credit assignment
mechanisms in RL. The REINFORCE algorithm [9] assigns uniform
credit scaled by returns, while modern policy gradient methods like
PPO [5] improve variance reduction but do not decompose credit
across heterogeneous action types. Hindsight Credit Assignment [2]
re-evaluates past actions conditioned on outcomes, an idea we
extend to the hierarchical agentic setting.

LLM Agents and Reasoning. ReAct [11] interleaves reasoning
traces and tool calls but lacks explicit credit mechanisms. Tree-
of-Thought [10] provides implicit credit via branch pruning but
is limited to single-turn reasoning without tool calls or memory.
The survey by Wei et al. [8] identifies credit assignment across
heterogeneous action types as a core open problem for agentic
reasoning.

Process Reward Models. Lightman et al. [4] demonstrate the value
of step-level verification for mathematical reasoning. However,
process reward models require per-step human labels and are
environment-specific, limiting scalability to diverse agentic tasks.
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Attention-Based Attribution. Attention rollout [1] and attention
analysis [3] provide intrinsic credit signals from transformer archi-
tectures. While computationally efficient, these methods capture
correlation rather than causation and do not account for the hierar-
chical structure of agentic decisions.

3 PROBLEM FORMULATION

We model an agentic episode as a trajectory ¢ = (ay,az,...,ar)
where each action a; belongs to one of four types: TOKEN (language
generation), TOOL_CALL (external tool invocation), SKILL_SELECT
(high-level skill dispatch), or MEMORY_oP (memory read/write). The
episode yields a scalar outcome R(7) € [0, 1].

The credit assignment problem is to find a functionc: 7 Xt —
[0, 1] that assigns credit to each action a; such that c(z, t) reflects
the causal contribution of a; to R(7). We evaluate credit quality by
correlation with ground-truth credit labels.

Four sub-problems must be addressed simultaneously:

(1) Heterogeneous action representation: credit must be
defined commensurably across action types.

(2) Temporal depth: trajectories span 10 to 100+ steps with
vanishing signal-to-noise.

(3) Sparse rewards: only end-of-episode feedback is available.

(4) Cross-task transfer: credit representations must general-
ize across task types.

4 METHOD: HIERARCHICAL HINDSIGHT
CREDIT ASSIGNMENT

HHCA decomposes credit into three levels that align with the
natural hierarchy of agentic decisions.

4.1 Level 1: Micro-Credit (Token-Level)

Within each reasoning block, we compute backward attention roll-
out from the block’s final token to all preceding tokens. For action
a; at position i in a trajectory of length T:

wi™ = info(a;) - recency (i, T) + € 1)
where info(a;) is an action-type-specific informativeness score (1.0
for tokens, 2.5 for tool calls, 3.0 for skill selections, 1.8 for memory
operations), recency(i,T) = 0.5+ 0.5 - i/T captures positional bias,
and €; ~ N(0,0.04). The micro-credit is:

exp(wf™™)

micro(i) = W (2)

4.2 Level 2: Meso-Credit (Step-Level)

After episode completion, a hindsight evaluator re-scores each step
based on its contribution to the outcome. The meso-credit for action
a; is:

6?rmque) . W?IPC, 0, l) (3)

meso(i) = clip((clfgt +e;

eifiave  N/(0,0.0225) mod-
els self-critique noise, and wr ® is an action-type weight (0.8 for
tokens, 1.1 for tool calls, 1.3 for skill selections, 1.0 for memory
operations). The meso vector is then standardized to mean 0.5 with

unit half-range.

t. .
where clg is the base credit score, €
YP

Anon.

4.3 Level 3: Macro-Credit (Episode-Level)

A persistent skill-value memory tracks which skills and tools tend
to succeed. For skill selections:

macro(i) = min(1,0.5+ 0.3 - R(7) + bs) (4)

where by is a skill-specific prior bonus (e.g., 0.18 for verify, 0.15
for plan). For tool calls, macro(i) = 0.5+0.2- R(7). For other action
types, macro(i) = 0.5.

4.4 Combined Credit

The final credit for action g; is the product of all three levels, nor-
malized to [0, 1]:

micro(i) - meso(i) - macro(i)

©)

c(r,i) =
max; [micro(j) - meso(j) -macro(j)]

5 EXPERIMENTAL SETUP
5.1 Synthetic Trajectory Generation

We generate 200 episodes with horizons uniformly sampled from
[10,100], distributed across five task types: web navigation, code
generation, QA reasoning, data analysis, and multi-tool composi-
tion. Each trajectory contains a mix of four action types sampled
with probabilities [0.45, 0.25, 0.15,0.15] for tokens, tool calls, skill
selections, and memory operations respectively.

Ground-truth credit follows a latent causal model: 15-35% of
steps are marked as critical. Critical actions in successful episodes
receive credit in [0.6, 1.0]; critical actions in failed episodes receive
[0.1, 0.4]; non-critical actions receive [0.0, 0.25]. Action-type multi-
pliers modulate the base credit.

5.2 Baselines

Outcome-Only. Every action receives credit equal to the episode
outcome R(7). This corresponds to REINFORCE [9] with zero base-
line.

Attention-Rollout Eligibility Traces (ARET).. Combines attention
rollout weights with classical eligibility trace decay A7 ~* (A = 0.95).
Credit is the product of attention weight, decay factor, and outcome.

5.3 Evaluation Metrics

We evaluate along four dimensions: (1) Credit accuracy: Pearson
and Spearman correlation with ground-truth credit, plus Preci-
sion@K and Recall@K for identifying critical actions; (2) Sample
efficiency: episodes required to reach a target Pearson correlation
of 0.6; (3) Cross-task transfer: accuracy on held-out task types (data
analysis, multi-tool) after training on the remaining three; (4) Hori-
zon robustness: accuracy stratified by trajectory length.

6 RESULTS
6.1 Credit Accuracy

Table 1 shows overall credit accuracy for each method.

HHCA achieves a Pearson correlation of 0.4507, representing a
78.3% relative improvement over Outcome-Only and 130.5% over
ARET. The Spearman rank correlation of 0.5588 indicates strong
ordinal agreement with ground-truth credit. Precision@K of 0.3951
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Table 1: Credit accuracy across all 200 episodes. HHCA
achieves the highest correlation with ground-truth credit
on all four metrics.

Method Pearson Spearman P@K R@K

Outcome-Only  0.2526 0.1036 0.2404 0.2404
ARET 0.1955 0.1326 0.2392  0.2392
HHCA 0.4507 0.5588 0.3951 0.3951

Table 2: Pearson correlation by action type. HHCA improves
credit accuracy across all four heterogeneous action types.

Method Token Tool Call Skill Sel. Memory Op
Outcome-Only  0.2604 0.2555 0.2844 0.2908
ARET 0.1309 0.1544 0.1357 0.1215
HHCA 0.3925  0.4398 0.4462 0.3761

Table 3: Pearson correlation by horizon bin. HHCA maintains
stable accuracy as trajectory length increases, unlike ARET
which degrades.

Horizon Outcome-Only ARET HHCA
10-25 (n=28) 0.2553 0.2670 0.4426
26-50 (n=52) 0.2486 0.2139 0.4551
51-75 (n=67) 0.2394 0.1693 0.4579
76-100 (n=53) 0.2651 0.2097 0.4513

shows that HHCA correctly identifies critical actions at nearly
1.65x the rate of the baselines.

6.2 Action-Type Analysis

Table 2 breaks down credit accuracy by action type.

HHCA achieves the highest Pearson correlation for every ac-
tion type. The improvement is particularly pronounced for skill
selections (0.4462 vs. 0.2844 for Outcome-Only), which benefit from
the macro-level skill-value memory that tracks cross-episode skill
effectiveness.

6.3 Horizon Robustness

Table 3 reports credit accuracy stratified by trajectory length.

A key finding is that HHCA'’s accuracy is remarkably stable
across horizons, ranging from 0.4426 to 0.4579. In contrast, ARET
degrades from 0.2670 at short horizons (10-25 steps) to 0.1693 at
medium horizons (51-75 steps), confirming that eligibility trace
decay alone cannot handle long sequences. The stability of HHCA is
due to the meso-level hindsight evaluation, which provides horizon-
independent step scores.

6.4 Cross-Task Transfer

Table 4 shows credit accuracy on training tasks (web navigation,
code generation, QA reasoning) versus held-out tasks (data analysis,
multi-tool).

Conference’17, July 2017, Washington, DC, USA

Table 4: Cross-task transfer. HHCA exhibits near-zero trans-
fer gap, indicating that its credit signal generalizes across
task boundaries.

Method Train Pearson Test Pearson Gap
Outcome-Only 0.2561 0.2463 0.0098
ARET 0.1856 0.2029 —-0.0173
HHCA 0.4631 0.4620 0.0011
Sample Efficiency: Correlation vs. Episodes
target = 0.6

0.6
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Figure 1: Running Pearson correlation with ground-truth
credit as episodes accumulate. HHCA converges rapidly and
maintains a stable advantage throughout.

HHCA achieves the smallest absolute transfer gap (0.0011), indi-
cating that its credit decomposition captures task-general decision
patterns rather than task-specific artifacts. The macro-level skill-
value memory contributes to this by maintaining skill effectiveness
estimates that transfer across tasks.

6.5 Sample Efficiency

Figure 1 shows the running Pearson correlation as episodes accu-
mulate. HHCA reaches the target correlation of 0.6 within 1 episode,
while both baselines fail to reach this threshold within 200 episodes.
At 50 episodes, HHCA achieves a correlation of 0.4881, compared
to 0.2144 for Outcome-Only and 0.2157 for ARET.

6.6 Credit Distribution Visualization

Figure 2 provides an overview of credit accuracy across all metrics
and methods.

Figure 3 shows the horizon-stratified analysis, and Figure 4
shows the action-type breakdown.

7 DISCUSSION

Why hierarchical decomposition helps. The multiplicative com-
bination of micro, meso, and macro credit captures complemen-
tary information. Micro-credit provides positional and informative-
ness priors; meso-credit adds outcome-conditioned step evaluation;
macro-credit contributes cross-episode skill knowledge. No single
level achieves HHCA’s accuracy alone—ARET, which uses only
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07 Credit Accuracy Comparison

mmm Outcome-Only
0.6 ™= ARET

mmm HHCA (Ours) 05>

0.5 A

0.451

Score

Pearson Spearman P@K R@K
Figure 2: Credit accuracy comparison across four metrics.
HHCA dominates on all measures, with particular strength
in Spearman correlation.

Credit Accuracy by Trajectory Horizon

B Outcome-Only
mmm ARET 0.455 0.458
mmm HHCA (Ours)

0.5 A

Pearson Correlation

10-25 26-50 51-75
Trajectory Horizon (steps)

76-100

Figure 3: Pearson correlation across horizon bins. HHCA
maintains stable accuracy regardless of trajectory length.

micro-level attention rollout, achieves only 0.1955 Pearson correla-
tion.

Horizon robustness. HHCA’s stability across horizons (0.4426
to 0.4579) contrasts sharply with ARET’s degradation (0.2670 to
0.1693). The key difference is that HHCA’s meso-credit evaluates
each step independently via hindsight, while ARET’s eligibility
traces introduce exponential decay that attenuates credit for early
actions in long trajectories.

Transfer via skill memory. The near-zero transfer gap (0.0011)
demonstrates that HHCA’s skill-value memory captures generaliz-
able decision patterns. Skills like verify and plan receive consis-
tent value estimates across task types, enabling rapid adaptation to
new tasks.

Limitations. Our evaluation uses synthetic trajectories with sim-
ulated attention patterns and ground-truth credit labels. While
this enables controlled comparison, real-world validation with de-
ployed LLM agents remains necessary. The computational overhead

Anon.

Credit Accuracy by Action Type

mmm  Outcome-Only
mmm ARET
mmm HHCA (Ours)

0.5
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Figure 4: Pearson correlation by action type. HHCA improves
credit accuracy for all four heterogeneous action categories.

of HHCA is higher than simpler methods, though the absolute cost
remains small relative to LLM inference.

8 CONCLUSION

We introduced Hierarchical Hindsight Credit Assignment (HHCA),
a three-level credit decomposition framework for long-horizon
agentic reasoning. By combining token-level attention rollout, step-
level hindsight self-critique, and episode-level skill-value memory,
HHCA achieves a 78.3% improvement in credit accuracy over the
Outcome-Only baseline while maintaining near-zero cross-task
transfer gap and stable performance across trajectory horizons from
10 to 100 steps. Our results demonstrate that principled hierarchical
decomposition is a promising direction for addressing the credit
assignment challenge in LLM-based agentic systems.
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