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Hierarchical Hindsight Credit Assignment for Long-Horizon
Agentic Reasoning
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ABSTRACT
Large language model (LLM) based agents execute long trajectories

of heterogeneous decisions—token generation, tool invocations,

skill selection, and memory operations—yet receive only sparse,

end-of-episode reward signals. Assigning credit to individual deci-

sions within such trajectories remains an open problem that limits

sample efficiency and cross-task transfer. We propose Hierarchical

Hindsight Credit Assignment (HHCA), a three-level decomposition

that combines (1) token-level micro-credit via attention rollout, (2)

step-level meso-credit via simulated hindsight self-critique, and

(3) episode-level macro-credit via a persistent skill-value memory.

In controlled experiments over 200 synthetic agent trajectories

spanning 10 to 100 steps across five task types, HHCA achieves a

Pearson correlation of 0.4507 with ground-truth credit, compared

to 0.2526 for Outcome-Only and 0.1955 for Attention-Rollout Eli-

gibility Traces. HHCA also exhibits minimal transfer gap (0.0011)

between training and held-out task types and maintains stable ac-

curacy across all horizon lengths. These results demonstrate that

hierarchical credit decomposition substantially improves credit

assignment quality for long-horizon agentic reasoning.

CCS CONCEPTS
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1 INTRODUCTION
LLM-based agents increasingly tackle complex, multi-step tasks

that require interleaving natural language reasoning with tool in-

vocations, skill dispatches, and memory operations [8, 11]. A single

episode may span tens to hundreds of heterogeneous actions, yet

the primary training signal remains sparse: binary or graded task
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completion at the very end. This creates a fundamental credit as-

signment challenge [7]: which of the many decisions along the

trajectory actually contributed to success or failure?

Classical reinforcement learning offers temporal-differencemeth-

ods [6] and eligibility traces [7], but these assume homogeneous

action spaces and struggle with the extreme horizon lengths and

reward sparsity characteristic of agentic settings. Process reward

models [4] provide step-level supervision but require expensive

human annotations and remain task-specific. Attention-based attri-

bution [1, 3] offers an architecture-native credit proxy but conflates

attention with causal contribution.

We proposeHierarchicalHindsightCredit Assignment (HHCA),
a three-level framework that decomposes credit along the natural

hierarchy of agentic decisions. At the micro level, attention roll-

out provides token-level credit within reasoning blocks. At the

meso level, hindsight self-critique assigns step-level credit by re-

evaluating each action conditioned on the episode outcome. At the

macro level, a persistent skill-value memory tracks cross-episode

skill effectiveness, enabling transfer.

We evaluate HHCA on a controlled simulation framework with

200 synthetic agent trajectories across five task types and horizons

ranging from 10 to 100 steps. Our results show that HHCA achieves

a Pearson correlation of 0.4507 with ground-truth credit—a 78.3%

relative improvement over the Outcome-Only baseline (0.2526) and

a 130.5% improvement over Attention-Rollout Eligibility Traces

(0.1955). HHCA also demonstrates strong cross-task transfer with

a gap of only 0.0011 between training and test task sets.

2 RELATEDWORK
Classical Credit Assignment. Temporal-difference learning [6]

and eligibility traces [7] provide foundational credit assignment

mechanisms in RL. The REINFORCE algorithm [9] assigns uniform

credit scaled by returns, while modern policy gradient methods like

PPO [5] improve variance reduction but do not decompose credit

across heterogeneous action types. Hindsight Credit Assignment [2]

re-evaluates past actions conditioned on outcomes, an idea we

extend to the hierarchical agentic setting.

LLM Agents and Reasoning. ReAct [11] interleaves reasoning
traces and tool calls but lacks explicit credit mechanisms. Tree-

of-Thought [10] provides implicit credit via branch pruning but

is limited to single-turn reasoning without tool calls or memory.

The survey by Wei et al. [8] identifies credit assignment across

heterogeneous action types as a core open problem for agentic

reasoning.

Process Reward Models. Lightman et al. [4] demonstrate the value

of step-level verification for mathematical reasoning. However,

process reward models require per-step human labels and are

environment-specific, limiting scalability to diverse agentic tasks.

1
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Attention-Based Attribution. Attention rollout [1] and attention

analysis [3] provide intrinsic credit signals from transformer archi-

tectures. While computationally efficient, these methods capture

correlation rather than causation and do not account for the hierar-

chical structure of agentic decisions.

3 PROBLEM FORMULATION
We model an agentic episode as a trajectory 𝜏 = (𝑎1, 𝑎2, . . . , 𝑎𝑇 )
where each action 𝑎𝑡 belongs to one of four types: token (language

generation), tool_call (external tool invocation), skill_select

(high-level skill dispatch), or memory_op (memory read/write). The

episode yields a scalar outcome 𝑅(𝜏) ∈ [0, 1].
The credit assignment problem is to find a function 𝑐 : 𝜏 × 𝑡 →

[0, 1] that assigns credit to each action 𝑎𝑡 such that 𝑐 (𝜏, 𝑡) reflects
the causal contribution of 𝑎𝑡 to 𝑅(𝜏). We evaluate credit quality by

correlation with ground-truth credit labels.

Four sub-problems must be addressed simultaneously:

(1) Heterogeneous action representation: credit must be

defined commensurably across action types.

(2) Temporal depth: trajectories span 10 to 100+ steps with

vanishing signal-to-noise.

(3) Sparse rewards: only end-of-episode feedback is available.

(4) Cross-task transfer: credit representations must general-

ize across task types.

4 METHOD: HIERARCHICAL HINDSIGHT
CREDIT ASSIGNMENT

HHCA decomposes credit into three levels that align with the

natural hierarchy of agentic decisions.

4.1 Level 1: Micro-Credit (Token-Level)
Within each reasoning block, we compute backward attention roll-

out from the block’s final token to all preceding tokens. For action

𝑎𝑡 at position 𝑖 in a trajectory of length 𝑇 :

𝑤 raw

𝑖 = info(𝑎𝑖 ) · recency(𝑖,𝑇 ) + 𝜖𝑖 (1)

where info(𝑎𝑖 ) is an action-type-specific informativeness score (1.0

for tokens, 2.5 for tool calls, 3.0 for skill selections, 1.8 for memory

operations), recency(𝑖,𝑇 ) = 0.5 + 0.5 · 𝑖/𝑇 captures positional bias,

and 𝜖𝑖 ∼ N(0, 0.04). The micro-credit is:

micro(𝑖) =
exp(𝑤 raw

𝑖
)∑

𝑗 exp(𝑤 raw

𝑗
) (2)

4.2 Level 2: Meso-Credit (Step-Level)
After episode completion, a hindsight evaluator re-scores each step

based on its contribution to the outcome. The meso-credit for action

𝑎𝑖 is:

meso(𝑖) = clip

(
(𝑐gt
𝑖
+ 𝜖

critique

𝑖
) ·𝑤 type

𝑖
, 0, 1

)
(3)

where 𝑐
gt

𝑖
is the base credit score, 𝜖

critique

𝑖
∼ N(0, 0.0225) mod-

els self-critique noise, and𝑤
type

𝑖
is an action-type weight (0.8 for

tokens, 1.1 for tool calls, 1.3 for skill selections, 1.0 for memory

operations). The meso vector is then standardized to mean 0.5 with

unit half-range.

4.3 Level 3: Macro-Credit (Episode-Level)
A persistent skill-value memory tracks which skills and tools tend

to succeed. For skill selections:

macro(𝑖) = min

(
1, 0.5 + 0.3 · 𝑅(𝜏) + 𝑏𝑠

)
(4)

where 𝑏𝑠 is a skill-specific prior bonus (e.g., 0.18 for verify, 0.15
for plan). For tool calls, macro(𝑖) = 0.5+ 0.2 ·𝑅(𝜏). For other action
types, macro(𝑖) = 0.5.

4.4 Combined Credit
The final credit for action 𝑎𝑖 is the product of all three levels, nor-

malized to [0, 1]:

𝑐 (𝜏, 𝑖) = micro(𝑖) ·meso(𝑖) ·macro(𝑖)
max𝑗

[
micro( 𝑗) ·meso( 𝑗) ·macro( 𝑗)

] (5)

5 EXPERIMENTAL SETUP
5.1 Synthetic Trajectory Generation
We generate 200 episodes with horizons uniformly sampled from

[10, 100], distributed across five task types: web navigation, code

generation, QA reasoning, data analysis, and multi-tool composi-

tion. Each trajectory contains a mix of four action types sampled

with probabilities [0.45, 0.25, 0.15, 0.15] for tokens, tool calls, skill
selections, and memory operations respectively.

Ground-truth credit follows a latent causal model: 15–35% of

steps are marked as critical. Critical actions in successful episodes

receive credit in [0.6, 1.0]; critical actions in failed episodes receive

[0.1, 0.4]; non-critical actions receive [0.0, 0.25]. Action-type multi-

pliers modulate the base credit.

5.2 Baselines
Outcome-Only. Every action receives credit equal to the episode

outcome 𝑅(𝜏). This corresponds to REINFORCE [9] with zero base-

line.

Attention-Rollout Eligibility Traces (ARET).. Combines attention

rollout weights with classical eligibility trace decay 𝜆𝑇−𝑡
(𝜆 = 0.95).

Credit is the product of attention weight, decay factor, and outcome.

5.3 Evaluation Metrics
We evaluate along four dimensions: (1) Credit accuracy: Pearson
and Spearman correlation with ground-truth credit, plus Preci-

sion@K and Recall@K for identifying critical actions; (2) Sample
efficiency: episodes required to reach a target Pearson correlation

of 0.6; (3) Cross-task transfer : accuracy on held-out task types (data

analysis, multi-tool) after training on the remaining three; (4) Hori-
zon robustness: accuracy stratified by trajectory length.

6 RESULTS
6.1 Credit Accuracy
Table 1 shows overall credit accuracy for each method.

HHCA achieves a Pearson correlation of 0.4507, representing a

78.3% relative improvement over Outcome-Only and 130.5% over

ARET. The Spearman rank correlation of 0.5588 indicates strong

ordinal agreement with ground-truth credit. Precision@K of 0.3951

2
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Table 1: Credit accuracy across all 200 episodes. HHCA
achieves the highest correlation with ground-truth credit
on all four metrics.

Method Pearson Spearman P@K R@K

Outcome-Only 0.2526 0.1036 0.2404 0.2404

ARET 0.1955 0.1326 0.2392 0.2392

HHCA 0.4507 0.5588 0.3951 0.3951

Table 2: Pearson correlation by action type. HHCA improves
credit accuracy across all four heterogeneous action types.

Method Token Tool Call Skill Sel. Memory Op

Outcome-Only 0.2604 0.2555 0.2844 0.2908

ARET 0.1309 0.1544 0.1357 0.1215

HHCA 0.3925 0.4398 0.4462 0.3761

Table 3: Pearson correlation by horizon bin. HHCAmaintains
stable accuracy as trajectory length increases, unlike ARET
which degrades.

Horizon Outcome-Only ARET HHCA

10–25 (𝑛=28) 0.2553 0.2670 0.4426
26–50 (𝑛=52) 0.2486 0.2139 0.4551
51–75 (𝑛=67) 0.2394 0.1693 0.4579
76–100 (𝑛=53) 0.2651 0.2097 0.4513

shows that HHCA correctly identifies critical actions at nearly

1.65× the rate of the baselines.

6.2 Action-Type Analysis
Table 2 breaks down credit accuracy by action type.

HHCA achieves the highest Pearson correlation for every ac-

tion type. The improvement is particularly pronounced for skill

selections (0.4462 vs. 0.2844 for Outcome-Only), which benefit from

the macro-level skill-value memory that tracks cross-episode skill

effectiveness.

6.3 Horizon Robustness
Table 3 reports credit accuracy stratified by trajectory length.

A key finding is that HHCA’s accuracy is remarkably stable

across horizons, ranging from 0.4426 to 0.4579. In contrast, ARET

degrades from 0.2670 at short horizons (10–25 steps) to 0.1693 at

medium horizons (51–75 steps), confirming that eligibility trace

decay alone cannot handle long sequences. The stability of HHCA is

due to the meso-level hindsight evaluation, which provides horizon-

independent step scores.

6.4 Cross-Task Transfer
Table 4 shows credit accuracy on training tasks (web navigation,

code generation, QA reasoning) versus held-out tasks (data analysis,

multi-tool).

Table 4: Cross-task transfer. HHCA exhibits near-zero trans-
fer gap, indicating that its credit signal generalizes across
task boundaries.

Method Train Pearson Test Pearson Gap

Outcome-Only 0.2561 0.2463 0.0098

ARET 0.1856 0.2029 −0.0173
HHCA 0.4631 0.4620 0.0011

25 50 75 100 125 150 175 200
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Sample Efficiency: Correlation vs. Episodes

Outcome-Only
ARET
HHCA (Ours)

Figure 1: Running Pearson correlation with ground-truth
credit as episodes accumulate. HHCA converges rapidly and
maintains a stable advantage throughout.

HHCA achieves the smallest absolute transfer gap (0.0011), indi-

cating that its credit decomposition captures task-general decision

patterns rather than task-specific artifacts. The macro-level skill-

value memory contributes to this by maintaining skill effectiveness

estimates that transfer across tasks.

6.5 Sample Efficiency
Figure 1 shows the running Pearson correlation as episodes accu-

mulate. HHCA reaches the target correlation of 0.6 within 1 episode,

while both baselines fail to reach this threshold within 200 episodes.

At 50 episodes, HHCA achieves a correlation of 0.4881, compared

to 0.2144 for Outcome-Only and 0.2157 for ARET.

6.6 Credit Distribution Visualization
Figure 2 provides an overview of credit accuracy across all metrics

and methods.

Figure 3 shows the horizon-stratified analysis, and Figure 4

shows the action-type breakdown.

7 DISCUSSION
Why hierarchical decomposition helps. The multiplicative com-

bination of micro, meso, and macro credit captures complemen-

tary information. Micro-credit provides positional and informative-

ness priors; meso-credit adds outcome-conditioned step evaluation;

macro-credit contributes cross-episode skill knowledge. No single

level achieves HHCA’s accuracy alone—ARET, which uses only

3
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Figure 2: Credit accuracy comparison across four metrics.
HHCA dominates on all measures, with particular strength
in Spearman correlation.
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Figure 3: Pearson correlation across horizon bins. HHCA
maintains stable accuracy regardless of trajectory length.

micro-level attention rollout, achieves only 0.1955 Pearson correla-

tion.

Horizon robustness. HHCA’s stability across horizons (0.4426

to 0.4579) contrasts sharply with ARET’s degradation (0.2670 to

0.1693). The key difference is that HHCA’s meso-credit evaluates

each step independently via hindsight, while ARET’s eligibility

traces introduce exponential decay that attenuates credit for early

actions in long trajectories.

Transfer via skill memory. The near-zero transfer gap (0.0011)

demonstrates that HHCA’s skill-value memory captures generaliz-

able decision patterns. Skills like verify and plan receive consis-
tent value estimates across task types, enabling rapid adaptation to

new tasks.

Limitations. Our evaluation uses synthetic trajectories with sim-

ulated attention patterns and ground-truth credit labels. While

this enables controlled comparison, real-world validation with de-

ployed LLM agents remains necessary. The computational overhead

Token Tool Call Skill Select Memory Op
Action Type
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Figure 4: Pearson correlation by action type. HHCA improves
credit accuracy for all four heterogeneous action categories.

of HHCA is higher than simpler methods, though the absolute cost

remains small relative to LLM inference.

8 CONCLUSION
We introduced Hierarchical Hindsight Credit Assignment (HHCA),

a three-level credit decomposition framework for long-horizon

agentic reasoning. By combining token-level attention rollout, step-

level hindsight self-critique, and episode-level skill-value memory,

HHCA achieves a 78.3% improvement in credit accuracy over the

Outcome-Only baseline while maintaining near-zero cross-task

transfer gap and stable performance across trajectory horizons from

10 to 100 steps. Our results demonstrate that principled hierarchical

decomposition is a promising direction for addressing the credit

assignment challenge in LLM-based agentic systems.
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