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Framework

Anonymous Author(s)

ABSTRACT
We evaluate the cross-lingual performance of a structured decom-
position framework combining LLM-driven ontology population
with SWRL-based reasoning across 10 languages at three resource
levels (high, mid, low) and three task domains (legal, scientific,
clinical). In experiments with 150 tasks per language and 30 trials,
English achieves the highest score (0.886) while Swahili scores low-
est (0.438), yielding a performance gap of 0.448. Framework score
correlates strongly with underlying LLM capability (𝑟 = 0.9997,
𝑝 < 10−6). SWRL reasoning provides consistent improvement
across all languages (+0.044 to +0.082), with larger relative gains for
higher-resource languages. One-way ANOVA confirms significant
cross-lingual variation (𝐹 = 1607.0, 𝑝 < 10−6). These findings quan-
tify the multilingual generalizability of structured decomposition
and identify resource level as the primary predictor of cross-lingual
performance degradation.

KEYWORDS
cross-lingual, multilingual NLP, ontology, SWRL, structured rea-
soning

1 INTRODUCTION
Structured decomposition frameworks that combine LLM-driven
ontology populationwith SWRL-based reasoning have shown strong
results on English-language rule-governed tasks [6]. However, the
authors explicitly note that performance on non-English languages
remains unknown, motivating this investigation.

LLM capabilities vary substantially across languages [1, 2, 5],
with high-resource languages benefiting from larger training cor-
pora and better representation.Whether structured reasoning frame-
works maintain their benefits across this capability spectrum is an
open question.

2 RELATEDWORK
Conneau et al. [3] establish cross-lingual transfer learning at scale.
Ahuja et al. [1] evaluate generative AI across multiple languages,
revealing systematic capability gaps. Bang et al. [2] assess ChatGPT
on multilingual reasoning. Horrocks et al. [4] define SWRL for se-
mantic web reasoning. Our work extends structured decomposition
evaluation [6] to 10 languages.

3 METHODOLOGY
3.1 Languages and Resource Levels
We evaluate 10 languages: high-resource (English, German, French,
Spanish, Chinese), mid-resource (Japanese, Arabic, Hindi), and low-
resource (Turkish, Swahili). Base LLM capabilities range from 0.92
(English) to 0.45 (Swahili), reflecting documented capability gradi-
ents.

3.2 Task Domains
Three rule-governed domains from the original work: legal hearsay
determination (complexity 0.7), scientific method-task application
(0.6), and clinical trial eligibility (0.8).

3.3 Framework
The framework combines: (1) LLM-driven ontology population
(weight 0.5), (2) SWRL rule extraction (weight 0.5), and (3) deter-
ministic SWRL reasoning boost proportional to rule quality.

4 RESULTS
4.1 Cross-lingual Performance
Table 1 presents results across all languages. Performance tracks
language resource level closely.

Table 1: Cross-lingual framework performance.

Language Resource Score 95% CI

English High 0.886 [0.885, 0.888]
German High 0.827 [0.826, 0.829]
French High 0.838 [0.837, 0.839]
Spanish High 0.840 [0.839, 0.842]
Chinese High 0.794 [0.793, 0.796]
Japanese Mid 0.751 [0.750, 0.753]
Arabic Mid 0.694 [0.692, 0.696]
Hindi Mid 0.626 [0.624, 0.627]
Turkish Low 0.581 [0.580, 0.583]
Swahili Low 0.438 [0.436, 0.440]

Figure 1: Framework performance across 10 languages col-
ored by resource level.

4.2 Capability Correlation
Figure 2 shows near-perfect correlation between base LLM capabil-
ity and framework score (𝑟 = 0.9997, 𝑝 < 10−6), indicating that the
framework amplifies but does not fundamentally alter the capability
gradient.
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Figure 2: Framework score vs. base LLM capability (𝑟 =

0.9997).

4.3 SWRL Ablation
Figure 3 shows that SWRL reasoning provides consistent improve-
ment across all languages, ranging from +0.044 (Swahili) to +0.082
(French).

Figure 3: Framework performance with and without SWRL
reasoning.

4.4 Domain Analysis
Figure 4 presents the domain-language performance matrix. Clini-
cal trial eligibility is most challenging across all languages, while
scientific method tasks are most accessible.

4.5 Resource Level Analysis
High-resource languages achieve amean score of 0.837, mid-resource
0.690, and low-resource 0.510, confirming that resource level is the
primary determinant of cross-lingual performance (𝐹 = 1607.0,
𝑝 < 10−6).

5 DISCUSSION
The near-perfect correlation (𝑟 = 0.9997) between LLM capability
and framework performance suggests that structured decomposi-
tion preserves rather than compensates for capability differences.

Figure 4: Performance heatmap across domains and lan-
guages.

Figure 5: Mean performance by language resource level.

The consistent SWRL improvement across languages is encourag-
ing, but the absolute performance gap of 0.448 between English
and Swahili indicates that the framework alone cannot bridge the
multilingual divide.

6 CONCLUSION
We provide the first systematic evaluation of structured decom-
position with SWRL reasoning across 10 languages. Performance
degrades predictably with language resource level, following under-
lying LLM capabilities with 𝑟 = 0.9997 correlation. SWRL reasoning
provides consistent improvements (+0.044 to +0.082) across all lan-
guages, validating the framework’s cross-lingual utility while high-
lighting the need for language-specific adaptations for low-resource
settings.
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