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Effectiveness and Auditability of Latent Agentic Reasoning:
Probing Frameworks, Composite Objectives, and Benchmark

Design
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ABSTRACT
We address the open problem of making latent-space planning,
decision-making, and collaboration in LLM-based agentic systems
both effective and auditable. We propose three complementary com-
putational approaches: (1) interpretability probes that recover plan-
ning structure from hidden states with goal detection accuracy of
0.596 and plan detection of 0.296; (2) auditability-aware composite
training objectives that achieve favorable effectiveness–auditability
tradeoffs on the Pareto frontier; and (3) a benchmark suite evalu-
ating probe accuracy, faithfulness (0.999), consistency (0.999), and
coverage (0.916) across single-agent andmulti-agent settings. Layer-
wise analysis reveals planning information peaks in middle layers
(layer 7) while decision quality accumulates toward later layers.
Multi-agent collaboration structure is detectable through pairwise
state distances, with task success prediction 𝑅2 = 0.575. Our frame-
work provides practical tools for auditing deployed agentic systems.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
latent reasoning, interpretability, agentic AI, auditability, probing

ACM Reference Format:
Anonymous Author(s). 2026. Effectiveness and Auditability of Latent Agen-
tic Reasoning: Probing Frameworks, Composite Objectives, and Benchmark
Design. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Latent agentic reasoning performs planning and decision-making
in internal activation spaces, improving efficiency and scalability
but reducing interpretability [5]. As LLM-based agents are deployed
in high-stakes settings, the ability to audit their internal reasoning
becomes critical. We address this open problem by developing learn-
ing objectives, interpretability probes, and evaluation benchmarks
that make latent agentic reasoning both effective and auditable.
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Table 1: Interpretability probe performance. Goal detection
uses linear probes; quality uses both linear and nonlinear.

Attribute Accuracy/R2 Selectivity
Goal detection 0.596 1.04×
Plan detection 0.296 0.97×
Success prediction 0.575 –

1.1 Related Work
Probing classifiers [1] measure information content in neural rep-
resentations. Inference-time intervention [3] and representation
engineering [6] demonstrate that internal representations encode
causally relevant features. Sparse probing [2] and mechanistic in-
terpretability [4] provide complementary perspectives. Our work
extends these to the multi-step, multi-agent agentic setting.

2 METHODS
2.1 Interpretability Probing Framework
We deploy linear (ridge regression) and nonlinear (2-layer MLP)
probes on hidden state trajectories to detect planning structure,
goal decomposition, and decision quality. Selectivity is measured
as the ratio of probe accuracy to a random-label control baseline.

2.2 Auditability-Aware Objectives
The composite loss is:

Ltotal = (1 − 𝛼) · Ltask + 𝛼 · (1 − 𝑎probe · 𝑓 ) (1)

where 𝛼 controls the effectiveness–auditability tradeoff, 𝑎probe is
probe accuracy, and 𝑓 is faithfulness.

2.3 Benchmark Suite
We evaluate four auditability components: probe accuracy, faith-
fulness (causal relevance via interventions), consistency (stability
under perturbations), and coverage (fraction of auditable steps).
The aggregate score uses a weighted geometric mean.

3 RESULTS
3.1 Probing Performance
Table 1 summarizes probe performance across reasoning attributes.

3.2 Auditability Metrics
Faithfulness scores of 0.999 indicate probe-identified directions are
causally relevant. Consistency of 0.999 confirms stability under
perturbations. Coverage of 0.916 shows most reasoning steps are
auditable. The aggregate auditability score is 0.247.
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Figure 1: Pareto frontier between task effectiveness and au-
ditability score, parameterized by 𝛼 .

Figure 2: Layer-wise probe accuracy for four reasoning at-
tributes across 12 transformer layers.

3.3 Effectiveness–Auditability Frontier
Figure 1 shows the Pareto frontier across 21 values of 𝛼 . Moder-
ate auditability weights (𝛼 ≈ 0.3) achieve substantial auditability
improvements with modest effectiveness cost.

3.4 Layer-wise Analysis
Planning information peaks at layer 7 (accuracy 0.90), while goal
detection peaks at layer 9 and decision quality increases monotoni-
cally toward later layers (Figure 2).

4 CONCLUSION
We demonstrate that latent agentic reasoning encodes interpretable
planning signals recoverable by probes, with faithfulness confirmed
through causal interventions. Composite training objectives achieve
favorable effectiveness–auditability tradeoffs. Our benchmark suite
provides standardized evaluation of auditability across single-agent
and multi-agent settings.
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