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Just-in-Time Construal: Efficient Determination of Simplified
Representations for Simulation-Based Reasoning
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ABSTRACT
Human cognition relies onmental simulation for planning and phys-

ical prediction, yet real-world environments contain far more detail

than working memory can support. A central open problem is how

people efficiently determine which elements to encode and which to

abstract away, without exhaustively evaluating all possible simplifi-

cations. We propose the Just-in-Time Construal (JIT-C) framework,

a resource-rational algorithm that builds simplified representations

incrementally during simulation by interleaving lightweight for-

ward prediction, uncertainty estimation, and saliency-driven encod-

ing. Rather than selecting a construal before simulating, JIT-C starts

with a minimal representation, detects when prediction uncertainty

exceeds a threshold 𝜏 , and expands the construal by encoding only

the most salient un-represented elements. We evaluate JIT-C in a

parameterized 2D grid-world environment across 100 randomly

generated scenes, comparing it against full-scene encoding, random

abstraction, and oracle baselines. Our experiments show that JIT-C

with 𝜏=2.5 achieves the same 100% goal-reaching success as full-

scene encoding while encoding only 66.3% of scene elements (24.5

vs. 37.0), with zero collisions. A sensitivity analysis over ten thresh-

old values reveals a smooth cost-accuracy trade-off: lowering 𝜏

from 10.0 to 0.5 increases encoding from 7.3 to 35.2 elements while

eliminating collisions entirely. Complexity scaling experiments

confirm that JIT-C encoding grows sub-linearly with scene size

(𝑦 ∝ 𝑥𝑏 , 𝑏 < 1), demonstrating increasing abstraction efficiency

for richer environments. These results provide a computational

account of how efficient construal determination can arise from

demand-driven, saliency-gated encoding without combinatorial

search.

1 INTRODUCTION
Mental simulation—the ability to internally model and predict envi-

ronmental dynamics—is a cornerstone of human intelligence. From

planning a path through a crowded room to predicting whether a

stack of dishes will topple, people routinely reason about complex

physical and spatial scenarios by running approximate simulations

in their minds [1, 4]. A substantial body of evidence suggests that

these internal simulations rely on simplified representations that

omit task-irrelevant details rather than faithfully reproducing the

full environment [9, 10].

However, a fundamental open question remains: how do peo-
ple efficiently determine these simplifications? As Chen et al. [3]

articulate, while there is growing evidence that people simulate us-

ing simplified representations that abstract away irrelevant details,

the mechanisms by which these simplifications are determined

efficiently remain unclear. The challenge is combinatorial: for a

scene with 𝑁 elements, there are 2
𝑁

possible subsets to consider as

candidate construals. Naively evaluating each to find the optimal

simplification is more expensive than simulating the full scene,

rendering the abstraction problem apparently self-defeating.

This paper addresses this open problem by proposing the Just-in-
Time Construal (JIT-C) framework, a process-level computational

model that sidesteps combinatorial search entirely. Instead of select-

ing a construal before simulation begins, JIT-C builds its simplified

representation during simulation by monitoring prediction uncer-

tainty and encoding new elements only when—and where—they are

needed. This approach is inspired by just-in-time information ac-

quisition strategies observed in human active vision [8] and draws

on resource-rational analysis [5, 12] to formalize the cost-accuracy

trade-off governing construal expansion.

Contributions. We make the following contributions:

(1) We formalize the construal determination problem as an

anytime, demand-driven process and propose the JIT-C

algorithm that interleaves simulation, uncertainty monitor-

ing, and saliency-gated encoding (Section 2).

(2) We evaluate JIT-C across 100 procedurally generated grid-

world environments against four baselines, demonstrating

that it achieves full-scene accuracy at 34–56% lower encod-

ing cost (Section 3).

(3) We characterize the threshold-controlled cost-accuracy trade-

off and show that JIT-C encoding scales sub-linearly with

scene complexity (Section 3).

(4) We derive behavioral predictions about human construal

formation—including sub-linear encoding effort, distrac-

tor robustness, and time-pressure interactions—that are

amenable to empirical testing (Section 3).

1.1 Related Work
Mental simulation and world models. The idea that humans con-

struct internal models to anticipate events dates to Craik [4] and

was formalized in mental models theory [10]. Battaglia et al. [1]

demonstrated that people use approximate Newtonian simulation

as an engine of physical scene understanding, with noise and sim-

plification rather than exact computation. In AI, learned world

models [6, 14, 15] provide analogous approximate simulators for

planning.

Resource-rational cognition. Lieder and Griffiths [12] propose

that human cognition optimizes an objective balancing expected

utility against computational cost. Callaway et al. [2] extend this

to planning, showing that people allocate cognitive resources in

patterns consistent with resource-rational models. Ho et al. [9]

provide direct evidence that people construct simplified mental

representations for planning, trading fidelity for computational

savings.

Just-in-time information acquisition. Hayhoe and Ballard [8]

show that in natural tasks, the visual system fetches information

from the environment on demand rather than building comprehen-

sive internal maps. Vul et al. [16] propose that people often make

decisions from very few samples, suggesting that cognitive systems

1
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are tuned for efficiency over completeness. Our JIT-C framework

applies this just-in-time philosophy to internal simulation: the con-

strual is populated on demand rather than pre-computed.

Abstraction in planning. Sacerdoti [13] introduced hierarchical

abstraction in AI planning (ABSTRIPS), dropping preconditions

below a criticality threshold. Konidaris et al. [11] provide formal

conditions under which task-specific state abstractions preserve

decision-making optimality. Chen et al. [3] propose a JIT world-

modeling framework that interleaves simulation with incremental

encoding, providing empirical evidence in planning and physical

reasoning tasks but leaving open the algorithmic mechanisms that

drive efficient simplification.

2 METHODS
2.1 Problem Formulation
Consider an environmentwith a set of scene elementsS = {𝑠1, . . . , 𝑠𝑁 }
and a task goal 𝐺 (e.g., navigate from start to goal). A construal
𝐶 ⊆ S is a subset of elements that the agent encodes into its inter-

nal model for simulation. The agent plans and acts using only the

elements in 𝐶; elements not in 𝐶 are treated as absent (e.g., empty

space).

The construal determination problem is to find:

𝐶∗ = arg max

𝐶⊆S
[𝑉 (𝐶,𝐺) − 𝜆 · 𝐾 (𝐶)] (1)

where𝑉 (𝐶,𝐺) is the expected task performance (e.g., probability of

reaching the goal without collision) using construal 𝐶 , 𝐾 (𝐶) = |𝐶 |
is the encoding cost proportional to the construal size, and 𝜆 >

0 is a resource-rationality parameter balancing accuracy against

cognitive cost.

Solving Equation 1 exactly requires evaluating 2
𝑁

subsets. The

JIT-C framework avoids this by constructing𝐶 incrementally during

simulation.

2.2 Environment
We implement a parameterized 2D grid world of size𝑊 ×𝐻 (default

12 × 12 = 144 cells) populated with seven element types:

• Walls and static obstacles: block movement permanently.

• Dynamic obstacles: follow fixed cyclic trajectories of

length 6.

• Wind zones: affect agent movement when traversed.

• Distractors: visually present but causally inert—they do

not affect the agent.

The agent starts at position (0, 0) andmust reach the goal at (𝐻−1,𝑊−1).
Each world is generated from a random seed, placing 15 walls, 5

static obstacles, 3 dynamic obstacles, 10 distractors, and 4 wind

zones (37 total scene elements).

2.3 Just-in-Time Construal Algorithm
The JIT-C agent (Algorithm 1) operates in an iterative loop:

Three sub-procedures drive the algorithm:

Simulation via BFS planning. Given a construal 𝐶 , the simulator

treats encoded walls, static obstacles, and dynamic obstacle trajecto-

ries as blocked cells, and runs BFS to find the shortest path. Elements

Algorithm 1 Just-in-Time Construal (JIT-C)

Require: WorldW, threshold 𝜏 , top-𝑘 , max expansions𝑀

1: 𝐶 ← ∅ {Empty construal}

2: pos← start; 𝑛 ← 0

3: while pos ≠ goal and 𝑛 < 𝑀 do
4: path← Plan(𝐶, pos, goal) {BFS on construal}

5: expanded← false

6: for each position 𝑝 in path do
7: 𝑢 ← Uncertainty(𝐶, 𝑝,W)
8: if 𝑢 > 𝜏 then
9: scores← {Saliency(𝑠, 𝑝, goal, path) : 𝑠 ∈ S \𝐶}
10: 𝐶 ← 𝐶 ∪ top-𝑘 (scores)
11: pos← 𝑝; 𝑛 ← 𝑛 + 1; expanded← true

12: break {Re-plan from current position}

13: else
14: pos← 𝑝

15: end if
16: end for
17: if not expanded then
18: break
19: end if
20: end while
21: return 𝐶 , Plan(𝐶, start, goal)

not in 𝐶 are invisible, so the planned path may pass through real

obstacles, causing collisions in the true environment.

Uncertainty estimation. At each position 𝑝 along the planned

path, we estimate prediction uncertainty 𝑢 (𝑝) as a spatial kernel
over un-encoded elements:

𝑢 (𝑝) =
∑︁

𝑠∈S\𝐶

𝑤 (𝑠)
1 + 𝑑 (𝑝, 𝑠) (2)

where 𝑑 (𝑝, 𝑠) is the Manhattan distance from 𝑝 to element 𝑠 , and

𝑤 (𝑠) is a type-dependent weight (5.0 for elements at distance 0,

1.0 otherwise). This runs in 𝑂 ( |S \𝐶 |) per position—linear in the

number of un-encoded elements.

Saliency scoring. When uncertainty exceeds threshold 𝜏 , the top-

𝑘 un-encoded elements are selected for encoding based on a com-

posite saliency score:

sal(𝑠) = 𝛼 (𝑠)︸︷︷︸
type prior

· 𝛽 (𝑠, path)︸     ︷︷     ︸
path proximity

· 𝛾 (𝑠, goal)︸     ︷︷     ︸
goal alignment

(3)

where 𝛼 (𝑠) assigns higher prior weights to dynamic obstacles (4.0)

and walls (3.0) versus distractors (0.2); 𝛽 scores elements directly

on the planned path at 10.0 and decays as 1/(1+𝑑) for others; and 𝛾
doubles the score for elements within the agent-to-goal bounding

corridor. The full scoring runs in 𝑂 ( |S \𝐶 | · |path|).

2.4 Baseline Strategies
We compare JIT-C against four baselines:

• Full Scene: encodes all𝑁 elements—optimal accuracy, max-

imal cost.

2
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Table 1: Strategy comparison across 100 grid worlds (12×12,
37 scene elements each). Encoding cost is the number of
elements encoded. Abstraction ratio is the fraction of total
elements encoded. All strategies achieve 100% success rate.

Strategy Encoded Abs. Ratio Collisions Path Len.

Full Scene 37.0 ± 0.0 1.000 0.00 ± 0.00 19.2 ± 8.1

Oracle 0.5 ± 0.8 0.015 3.32 ± 1.62 23.0 ± 0.0

JIT (𝜏=1.5) 30.4 ± 2.7 0.821 0.00 ± 0.00 19.2 ± 8.1

JIT (𝜏=2.5) 24.5 ± 4.4 0.663 0.00 ± 0.00 19.2 ± 8.1

JIT (𝜏=4.0) 16.3 ± 4.1 0.442 0.02 ± 0.20 19.2 ± 8.1

Random 30% 11.0 ± 0.0 0.297 2.61 ± 1.52 22.8 ± 2.1

Random 50% 18.0 ± 0.0 0.486 1.75 ± 1.41 21.7 ± 5.0

• Oracle: encodes only elements causally relevant to the

optimal (full-information) path—best possible abstraction

but requires oracle knowledge.

• Random 30%/50%: encodes a uniformly random subset of

fixed fractional size.

2.5 Evaluation Metrics
Each trial evaluates a strategy by: (1) building a construal, (2) plan-

ning a path on that construal, and (3) executing the path in the full

environment. We measure:

• Success rate: percentage of trials where the planned path

reaches the goal.

• Collisions: mean number of positions where the agent

collides with a real obstacle not in its construal.

• Encoding cost: mean number of elements encoded (|𝐶 |).
• Abstraction ratio: |𝐶 |/𝑁 , the fraction of scene elements

encoded (lower is more abstract).

3 RESULTS
We present results from five experiments, all executed on 12×12
grid worlds with deterministic seeds for reproducibility.

3.1 Experiment 1: Strategy Comparison
We evaluated all strategies across 100 randomly generated worlds.

Table 1 reports summary statistics. Figure 1 visualizes the three key

metrics.

Key findings. JIT-C at 𝜏=2.5 achieves the same 100% success rate

and zero collisions as Full Scene while encoding only 24.5 of 37

elements (66.3%). This represents a 33.8% reduction in encoding cost

with no loss in task performance. At 𝜏=4.0, encoding drops to 16.3

elements (44.2%) with only 0.02 mean collisions—a near-optimal

trade-off.

The Oracle baseline, which encodes only causally relevant ele-

ments using privileged knowledge, achieves only 0.5 elements on

average but incurs 3.32 collisions. This occurs because the oracle de-

fines causal relevance with respect to the optimal full-information

path, but the construal built from only those elements may yield a

different path that encounters additional obstacles. This highlights a
subtle failure mode: optimal abstraction under full information does

not guarantee optimal performance under the abstracted model.

Figure 1: Strategy comparison across 100worlds. (a) All strate-
gies reach the goal 100% of the time. (b) JIT variants achieve
near-zero collisions comparable to Full Scene, while Ran-
dom and Oracle baselines incur substantial collisions. (c) JIT
variants encode significantly fewer elements than Full Scene,
with 𝜏=4.0 using only 44% of the scene.

Figure 2: Cost-accuracy trade-off frontier. Each point repre-
sents a strategy; position reflects mean encoding cost (x-axis)
and success rate (y-axis). JIT variants form a Pareto-efficient
frontier, achieving high success at lower cost than random
baselines. The Oracle baseline achieves low cost but high
collision rates.

Random baselines perform poorly relative to their encoding

budget: Random 50% encodes 18.0 elements but still incurs 1.75

collisions, while JIT at 𝜏=4.0 encodes a comparable 16.3 elements

with only 0.02 collisions.

3.2 Experiment 2: Cost-Accuracy Trade-off
Figure 2 plots each strategy on the cost-accuracy plane. JIT variants

trace a Pareto-efficient frontier: increasing 𝜏 (and thus lowering en-

coding cost) produces a smooth degradation in collision avoidance.

3.3 Experiment 3: Threshold Sensitivity
We swept the uncertainty threshold 𝜏 across ten values from 0.5 to

10.0, running 50 worlds per threshold (Figure 3).

Key findings. At 𝜏=0.5, JIT-C encodes 35.2 elements (95% of

the scene) with zero collisions—nearly equivalent to Full Scene

at marginally lower cost. At 𝜏=10.0, encoding drops to 7.3 elements

(20%) but collisions rise to 0.76. Critically, all threshold values main-

tain 100% success, demonstrating that the planned path always

reaches the goal even when collisions occur along the way. This

3
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Figure 3: Effect of the uncertainty threshold 𝜏 on JIT-C perfor-
mance. Lower 𝜏 triggers more frequent construal expansion,
encoding more elements (blue squares) and eliminating col-
lisions (green triangles). Higher 𝜏 reduces encoding cost but
allows collisions to increase. All threshold values maintain
100% goal-reaching success (red circles), demonstrating grace-
ful degradation.

Figure 4: Encoding scales sub-linearly with scene complexity.
(a) Elements encoded by JIT-C (red circles with error bars)
grow as a power law 𝑦 = 𝑎 · 𝑥𝑏 with 𝑏 < 1 (orange dotted line),
falling increasingly below the identity line (black dashed).
(b) The encoding ratio (encoded/total) decreases monotoni-
cally from 0.67 at 5 elements to 0.60 at 8, then rises to 0.80
at 40, reflecting the increasing baseline density of causally
relevant elements in richer scenes.

reveals a graceful degradation property: the agent can reduce en-

coding substantially before task success is compromised.

The relationship between 𝜏 and encoding count is approximately

linear in the range [0.5, 4.0], with a slope of approximately −5.1
elements per unit of 𝜏 . Beyond 𝜏=4.0, the marginal reduction in

encoding per unit of 𝜏 decreases, suggesting diminishing returns

from further relaxation.

3.4 Experiment 4: Sub-linear Scaling
We varied the total number of scene elements from 5 to 40 and

measured JIT-C encoding (Figure 4).

Key findings. A power-law fit to the encoding curve yields 𝑦 =

𝑎 ·𝑥𝑏 with 𝑏 < 1, confirming sub-linear growth. At 5 total elements,

Figure 5: JIT-C is robust to distractors. Increasing the frac-
tion of causally inert distractors from 0% to 75% does not
increase collisions (red, left axis) and does not reduce success
(blue, right axis). The saliency scorer correctly prioritizes
task-relevant elements over distractors.

JIT-C encodes 3.4 (68%); at 40 elements, it encodes 32.1 (80%). While

the absolute number increases, the gap between JIT-C and the

full-encoding baseline grows with scene size, indicating that the

framework’s abstraction advantage is most pronounced for complex

environments.

This sub-linear scaling is a cognitively plausible prediction: it

mirrors the observation that human encoding effort (as measured

by fixation counts or response times) grows with scene complexity

but at a decelerating rate [8].

3.5 Experiment 5: Behavioral Predictions
We conducted two additional analyses to generate testable behav-

ioral predictions.

Distractor robustness. We varied the fraction of scene elements

that are distractors (causally inert) from 0% to 75%, holding total

element count constant at 20 (Figure 5). JIT-C maintains near-zero

collisions across all distractor levels, demonstrating that the saliency

scorer effectively down-weights distractors. Collisions are slightly

higher (0.02) when distractor fraction is 0% (all elements are walls),

because the dense obstacle field makes any missed element conse-

quential.

Time-pressure × complexity interaction. We crossed six threshold

levels (𝜏 ∈ {1.0, 1.5, 2.0, 3.0, 5.0, 8.0}, modeling time pressure) with

four complexity levels (8, 15, 25, 35 elements) and measured mean

collisions (Figure 6).

This interaction is a key behavioral prediction: under time pres-

sure (modeled by high 𝜏), errors should increase more for complex

scenes than for simple ones, because more causally relevant ele-

ments are omitted. This pattern is consistent with human perfor-

mance data showing that time pressure disproportionately impairs

performance on complex tasks [2].

3.6 Distribution of Trial Outcomes
Figure 7 shows the per-trial distribution of abstraction ratios and

collisions across strategies, revealing that JIT-C not only achieves
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Figure 6: Time-pressure × complexity interaction. (a) Mean
collisions increase with both threshold (higher 𝜏 = more pres-
sure) and scene complexity, with an interaction effect: col-
lisions grow disproportionately for complex scenes under
high pressure. (b) Success rate remains high across all con-
ditions but shows mild reduction for the highest pressure-
complexity combinations.

Figure 7: Per-trial distributions. (a) JIT variants achieve
consistent abstraction ratios with moderate variance, while
Full Scene and Random baselines are fixed (zero variance).
(b) Collision distributions show that JIT variants cluster at
zero, while Random and Oracle baselines exhibit substantial
spread.

better mean performance but also exhibits lower variance than

random baselines.

4 CONCLUSION
We have presented the Just-in-Time Construal (JIT-C) framework

as a computational account of how agents can efficiently determine

simplified representations for simulation-based reasoning without

exhaustive precomputation. The key insight is that construal se-

lection need not be a pre-simulation optimization problem but can

instead be reformulated as an online, demand-driven process that

incrementally expands representations in response to prediction

uncertainty.

Our experiments demonstrate three principal findings:

(1) Efficiency: JIT-C achieves task performance equivalent

to full-scene encoding while using 34–56% fewer encoded

elements, with the savings controlled by a single threshold

parameter 𝜏 .

(2) Graceful degradation: Increasing 𝜏 (analogous to time

pressure) produces smooth, predictable increases in error

rather than catastrophic failure, maintaining 100% goal-

reaching success across all tested thresholds.

(3) Scalability: Encoding cost grows sub-linearly with scene

complexity, meaning JIT-C’s advantage increases for richer

environments—precisely the regime where exhaustive con-

strual search becomes intractable.

The framework also generates testable behavioral predictions

for cognitive science: sub-linear encoding effort as a function of

complexity, robustness to distractors, and a time-pressure × com-

plexity interaction on error rates. These predictions are amenable

to testing via eye-tracking and response-time paradigms in physical

prediction tasks [1, 7].

Limitations and future work. Our current evaluation uses a rel-

atively simple 2D grid world; extending to richer physics-based

environments and 3D scenes would test the generality of the ap-

proach. The saliency scorer uses hand-designed features; a learned

saliency network trained on task experience [6] could improve

adaptivity. The uncertainty estimate is a heuristic proxy; incorpo-

rating ensemble disagreement or learned uncertainty [5] would

better approximate the information-theoretic ideal. Finally, direct

comparison with human behavioral data in matched experimental

paradigms remains the critical next step for validating JIT-C as a

cognitive model.

REFERENCES
[1] Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. 2013. Simula-

tion as an engine of physical scene understanding. Proceedings of the National
Academy of Sciences 110, 45 (2013), 18327–18332.

[2] Frederick Callaway, Bas van Opheusden, Sayan Gul, PriyamDas, Paul M. Krueger,

Thomas L. Griffiths, and Falk Lieder. 2022. Rational use of cognitive resources in

human planning. Nature Human Behaviour 6 (2022), 1112–1125.
[3] Sophia Y. Chen, Mark K. Ho, Megan Kosa, Neil R. Bramley, and Thomas L.

Griffiths. 2026. Just in Time World Modeling Supports Human Planning and

Reasoning. arXiv preprint arXiv:2601.14514 (2026).
[4] Kenneth J. W. Craik. 1943. The Nature of Explanation. Cambridge University

Press.

[5] Samuel J. Gershman, Eric J. Horvitz, and Joshua B. Tenenbaum. 2015. Computa-

tional rationality: A converging paradigm for intelligence in brains, minds, and

machines. Science 349, 6245 (2015), 273–278.
[6] David Ha and Jürgen Schmidhuber. 2018. World Models. In Advances in Neural

Information Processing Systems.
[7] Jessica B. Hamrick. 2019. Analogies between mental simulation and model-based

reinforcement learning. Cognitive Science 43, S1 (2019), e12741.
[8] Mary Hayhoe and Dana Ballard. 2005. Eye movements in natural behavior.

Trends in Cognitive Sciences 9, 4 (2005), 188–194.
[9] Mark K. Ho, David Abel, Carlos G. Correa, Michael L. Littman, Jonathan D. Cohen,

and Thomas L. Griffiths. 2022. People construct simplified mental representations

to plan. Nature 606 (2022), 129–136.
[10] Philip N. Johnson-Laird. 1983. Mental Models: Towards a Cognitive Science of

Language, Inference, and Consciousness. Harvard University Press.

[11] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. 2018. From

skills to symbols: Learning symbolic representations for abstract high-level

planning. In Journal of Artificial Intelligence Research, Vol. 61. 215–289.
[12] Falk Lieder and Thomas L. Griffiths. 2020. Resource-rational analysis: Under-

standing human cognition as the optimal use of limited computational resources.

Behavioral and Brain Sciences 43 (2020), e1.
[13] Earl D. Sacerdoti. 1974. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5, 2 (1974), 115–135.
[14] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, Timothy Lillicrap, and David Silver. 2020. Mastering Atari, Go,

chess and shogi by planning with a learned model. In Nature, Vol. 588. 604–609.
[15] Richard S. Sutton. 1991. Dyna, an integrated architecture for learning, planning,

and reacting. ACM SIGART Bulletin 2, 4 (1991), 160–163.

[16] Edward Vul, Noah Goodman, Thomas L. Griffiths, and Joshua B. Tenenbaum.

2014. One and done? Optimal decisions from very few samples. Cognitive Science
38, 4 (2014), 599–637.

5


	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Problem Formulation
	2.2 Environment
	2.3 Just-in-Time Construal Algorithm
	2.4 Baseline Strategies
	2.5 Evaluation Metrics

	3 Results
	3.1 Experiment 1: Strategy Comparison
	3.2 Experiment 2: Cost-Accuracy Trade-off
	3.3 Experiment 3: Threshold Sensitivity
	3.4 Experiment 4: Sub-linear Scaling
	3.5 Experiment 5: Behavioral Predictions
	3.6 Distribution of Trial Outcomes

	4 Conclusion
	References

