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ABSTRACT

Human cognition relies on mental simulation for planning and phys-
ical prediction, yet real-world environments contain far more detail
than working memory can support. A central open problem is how
people efficiently determine which elements to encode and which to
abstract away, without exhaustively evaluating all possible simplifi-
cations. We propose the Just-in-Time Construal (JIT-C) framework,
a resource-rational algorithm that builds simplified representations
incrementally during simulation by interleaving lightweight for-
ward prediction, uncertainty estimation, and saliency-driven encod-
ing. Rather than selecting a construal before simulating, JIT-C starts
with a minimal representation, detects when prediction uncertainty
exceeds a threshold 7, and expands the construal by encoding only
the most salient un-represented elements. We evaluate JIT-C in a
parameterized 2D grid-world environment across 100 randomly
generated scenes, comparing it against full-scene encoding, random
abstraction, and oracle baselines. Our experiments show that JIT-C
with 7=2.5 achieves the same 100% goal-reaching success as full-
scene encoding while encoding only 66.3% of scene elements (24.5
vs. 37.0), with zero collisions. A sensitivity analysis over ten thresh-
old values reveals a smooth cost-accuracy trade-off: lowering
from 10.0 to 0.5 increases encoding from 7.3 to 35.2 elements while
eliminating collisions entirely. Complexity scaling experiments
confirm that JIT-C encoding grows sub-linearly with scene size
(y xt b < 1), demonstrating increasing abstraction efficiency
for richer environments. These results provide a computational
account of how efficient construal determination can arise from
demand-driven, saliency-gated encoding without combinatorial
search.

1 INTRODUCTION

Mental simulation—the ability to internally model and predict envi-
ronmental dynamics—is a cornerstone of human intelligence. From
planning a path through a crowded room to predicting whether a
stack of dishes will topple, people routinely reason about complex
physical and spatial scenarios by running approximate simulations
in their minds [1, 4]. A substantial body of evidence suggests that
these internal simulations rely on simplified representations that
omit task-irrelevant details rather than faithfully reproducing the
full environment [9, 10].

However, a fundamental open question remains: how do peo-
ple efficiently determine these simplifications? As Chen et al. [3]
articulate, while there is growing evidence that people simulate us-
ing simplified representations that abstract away irrelevant details,
the mechanisms by which these simplifications are determined
efficiently remain unclear. The challenge is combinatorial: for a
scene with N elements, there are 2NV possible subsets to consider as
candidate construals. Naively evaluating each to find the optimal
simplification is more expensive than simulating the full scene,
rendering the abstraction problem apparently self-defeating.

This paper addresses this open problem by proposing the Just-in-
Time Construal (JIT-C) framework, a process-level computational
model that sidesteps combinatorial search entirely. Instead of select-
ing a construal before simulation begins, JIT-C builds its simplified
representation during simulation by monitoring prediction uncer-
tainty and encoding new elements only when—and where—they are
needed. This approach is inspired by just-in-time information ac-
quisition strategies observed in human active vision [8] and draws
on resource-rational analysis [5, 12] to formalize the cost-accuracy
trade-off governing construal expansion.

Contributions. We make the following contributions:

(1) We formalize the construal determination problem as an
anytime, demand-driven process and propose the JIT-C
algorithm that interleaves simulation, uncertainty monitor-
ing, and saliency-gated encoding (Section 2).

(2) We evaluate JIT-C across 100 procedurally generated grid-
world environments against four baselines, demonstrating
that it achieves full-scene accuracy at 34-56% lower encod-
ing cost (Section 3).

(3) We characterize the threshold-controlled cost-accuracy trade-
off and show that JIT-C encoding scales sub-linearly with
scene complexity (Section 3).

(4) We derive behavioral predictions about human construal
formation—including sub-linear encoding effort, distrac-
tor robustness, and time-pressure interactions—that are
amenable to empirical testing (Section 3).

1.1 Related Work

Mental simulation and world models. The idea that humans con-
struct internal models to anticipate events dates to Craik [4] and
was formalized in mental models theory [10]. Battaglia et al. [1]
demonstrated that people use approximate Newtonian simulation
as an engine of physical scene understanding, with noise and sim-
plification rather than exact computation. In Al, learned world
models [6, 14, 15] provide analogous approximate simulators for
planning.

Resource-rational cognition. Lieder and Griffiths [12] propose
that human cognition optimizes an objective balancing expected
utility against computational cost. Callaway et al. [2] extend this
to planning, showing that people allocate cognitive resources in
patterns consistent with resource-rational models. Ho et al. [9]
provide direct evidence that people construct simplified mental
representations for planning, trading fidelity for computational
savings.

Just-in-time information acquisition. Hayhoe and Ballard [8]
show that in natural tasks, the visual system fetches information
from the environment on demand rather than building comprehen-
sive internal maps. Vul et al. [16] propose that people often make
decisions from very few samples, suggesting that cognitive systems
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are tuned for efficiency over completeness. Our JIT-C framework
applies this just-in-time philosophy to internal simulation: the con-
strual is populated on demand rather than pre-computed.

Abstraction in planning. Sacerdoti [13] introduced hierarchical
abstraction in AI planning (ABSTRIPS), dropping preconditions
below a criticality threshold. Konidaris et al. [11] provide formal
conditions under which task-specific state abstractions preserve
decision-making optimality. Chen et al. [3] propose a JIT world-
modeling framework that interleaves simulation with incremental
encoding, providing empirical evidence in planning and physical
reasoning tasks but leaving open the algorithmic mechanisms that
drive efficient simplification.

2 METHODS

2.1 Problem Formulation

Consider an environment with a set of scene elements S = {s1,...,sny}

and a task goal G (e.g., navigate from start to goal). A construal
C C S is a subset of elements that the agent encodes into its inter-
nal model for simulation. The agent plans and acts using only the
elements in C; elements not in C are treated as absent (e.g., empty
space).

The construal determination problem is to find:

C' =arg max [V(C,G) —A-K(O)] (1)

where V(C, G) is the expected task performance (e.g., probability of
reaching the goal without collision) using construal C, K(C) = |C|
is the encoding cost proportional to the construal size, and A >
0 is a resource-rationality parameter balancing accuracy against
cognitive cost.

Solving Equation 1 exactly requires evaluating 2N subsets. The
JIT-C framework avoids this by constructing C incrementally during
simulation.

2.2 Environment

We implement a parameterized 2D grid world of size W X H (default
12 X 12 = 144 cells) populated with seven element types:

e Walls and static obstacles: block movement permanently.

e Dynamic obstacles: follow fixed cyclic trajectories of
length 6.

e Wind zones: affect agent movement when traversed.

o Distractors: visually present but causally inert—they do
not affect the agent.

The agent starts at position (0, 0) and must reach the goal at (H—1, W-1).

Each world is generated from a random seed, placing 15 walls, 5
static obstacles, 3 dynamic obstacles, 10 distractors, and 4 wind
zones (37 total scene elements).

2.3 Just-in-Time Construal Algorithm

The JIT-C agent (Algorithm 1) operates in an iterative loop:
Three sub-procedures drive the algorithm:

Simulation via BFS planning. Given a construal C, the simulator
treats encoded walls, static obstacles, and dynamic obstacle trajecto-
ries as blocked cells, and runs BFS to find the shortest path. Elements

Anon.

Algorithm 1 Just-in-Time Construal (JIT-C)

Require: World ‘W, threshold 7, top-k, max expansions M
1: C « 0 {Empty construal}
2: pos «— start;n <« 0
3. while pos # goal and n < M do
4 path « PLAN(C, pos, goal) {BFS on construal}
5. expanded « false
6:  for each position p in path do
7 u < UNCERTAINTY(C, p, W)
8 if u > 7 then
9 scores «— {SALIENCY(s, p, goal, path) : s € S\ C}

10: C « C U top-k(scores)

11 pos « p; n < n+ 1; expanded « true
12: break {Re-plan from current position}
13: else

14: pos « p

15: end if

16:  end for

17: if not expanded then

18: break

19:  endif

20: end while

21: return C, PLAN(C, start, goal)

not in C are invisible, so the planned path may pass through real
obstacles, causing collisions in the true environment.

Uncertainty estimation. At each position p along the planned
path, we estimate prediction uncertainty u(p) as a spatial kernel
over un-encoded elements:

upy = Y @

SSC 1+d(p,s)

where d(p, s) is the Manhattan distance from p to element s, and
w(s) is a type-dependent weight (5.0 for elements at distance 0,
1.0 otherwise). This runs in O(|S \ C|) per position—linear in the
number of un-encoded elements.

Saliency scoring. When uncertainty exceeds threshold z, the top-
k un-encoded elements are selected for encoding based on a com-
posite saliency score:

sal(s) = a(s) - p(s,path) - y(s, goal) 3)
type prior path proximity goal alignment

where a(s) assigns higher prior weights to dynamic obstacles (4.0)
and walls (3.0) versus distractors (0.2); § scores elements directly
on the planned path at 10.0 and decays as 1/(1+d) for others; and y
doubles the score for elements within the agent-to-goal bounding
corridor. The full scoring runs in O(|S \ C| - |path]).

2.4 Baseline Strategies
We compare JIT-C against four baselines:

o Full Scene: encodes all N elements—optimal accuracy, max-
imal cost.
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Table 1: Strategy comparison across 100 grid worlds (12x12,
37 scene elements each). Encoding cost is the number of
elements encoded. Abstraction ratio is the fraction of total
elements encoded. All strategies achieve 100% success rate.

Strategy Encoded Abs. Ratio Collisions Path Len.
Full Scene 37.0 £ 0.0 1.000 0.00+0.00 19.2+38.1
Oracle 0.5+0.8 0.015 332+1.62 23.0x0.0
JIT (r=1.5) 304 +£2.7 0.821 0.00 £0.00 19.2+38.1
JIT (z=2.5) 245+ 44 0.663 0.00+0.00 19.2+38.1
JIT (7=4.0) 163 £4.1 0.442 0.02+020 19.2+38.1
Random 30% 11.0 + 0.0 0.297 2.61+152 228%2.1
Random 50% 18.0 + 0.0 0.486 1.75+ 141 21.7+£5.0

e Oracle: encodes only elements causally relevant to the
optimal (full-information) path—best possible abstraction
but requires oracle knowledge.

e Random 30%/50%: encodes a uniformly random subset of
fixed fractional size.

2.5 Evaluation Metrics

Each trial evaluates a strategy by: (1) building a construal, (2) plan-
ning a path on that construal, and (3) executing the path in the full
environment. We measure:

e Success rate: percentage of trials where the planned path
reaches the goal.

e Collisions: mean number of positions where the agent
collides with a real obstacle not in its construal.

e Encoding cost: mean number of elements encoded (|C|).

e Abstraction ratio: |C|/N, the fraction of scene elements
encoded (lower is more abstract).

3 RESULTS

We present results from five experiments, all executed on 12x12
grid worlds with deterministic seeds for reproducibility.

3.1 Experiment 1: Strategy Comparison

We evaluated all strategies across 100 randomly generated worlds.
Table 1 reports summary statistics. Figure 1 visualizes the three key
metrics.

Key findings. JIT-C at 7=2.5 achieves the same 100% success rate
and zero collisions as Full Scene while encoding only 24.5 of 37
elements (66.3%). This represents a 33.8% reduction in encoding cost
with no loss in task performance. At 7=4.0, encoding drops to 16.3
elements (44.2%) with only 0.02 mean collisions—a near-optimal
trade-off.

The Oracle baseline, which encodes only causally relevant ele-
ments using privileged knowledge, achieves only 0.5 elements on
average but incurs 3.32 collisions. This occurs because the oracle de-
fines causal relevance with respect to the optimal full-information
path, but the construal built from only those elements may yield a
different path that encounters additional obstacles. This highlights a
subtle failure mode: optimal abstraction under full information does
not guarantee optimal performance under the abstracted model.
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Figure 1: Strategy comparison across 100 worlds. (a) All strate-
gies reach the goal 100% of the time. (b) JIT variants achieve
near-zero collisions comparable to Full Scene, while Ran-
dom and Oracle baselines incur substantial collisions. (c) JIT
variants encode significantly fewer elements than Full Scene,
with 7=4.0 using only 44% of the scene.
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Figure 2: Cost-accuracy trade-off frontier. Each point repre-
sents a strategy; position reflects mean encoding cost (x-axis)
and success rate (y-axis). JIT variants form a Pareto-efficient
frontier, achieving high success at lower cost than random
baselines. The Oracle baseline achieves low cost but high
collision rates.

Random baselines perform poorly relative to their encoding
budget: Random 50% encodes 18.0 elements but still incurs 1.75
collisions, while JIT at 7=4.0 encodes a comparable 16.3 elements
with only 0.02 collisions.

3.2 Experiment 2: Cost-Accuracy Trade-off

Figure 2 plots each strategy on the cost-accuracy plane. JIT variants
trace a Pareto-efficient frontier: increasing 7 (and thus lowering en-
coding cost) produces a smooth degradation in collision avoidance.

3.3 Experiment 3: Threshold Sensitivity

We swept the uncertainty threshold 7 across ten values from 0.5 to
10.0, running 50 worlds per threshold (Figure 3).

Key findings. At 7=0.5, JIT-C encodes 35.2 elements (95% of
the scene) with zero collisions—nearly equivalent to Full Scene
at marginally lower cost. At 7=10.0, encoding drops to 7.3 elements
(20%) but collisions rise to 0.76. Critically, all threshold values main-
tain 100% success, demonstrating that the planned path always
reaches the goal even when collisions occur along the way. This
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Effect of Threshold 1 on JIT Performance
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Figure 3: Effect of the uncertainty threshold 7 on JIT-C perfor-
mance. Lower 7 triggers more frequent construal expansion,
encoding more elements (blue squares) and eliminating col-
lisions (green triangles). Higher 7 reduces encoding cost but
allows collisions to increase. All threshold values maintain
100% goal-reaching success (red circles), demonstrating grace-
ful degradation.

(a) Encoding vs. Complexity (b) Abstraction Efficiency
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Figure 4: Encoding scales sub-linearly with scene complexity.
(a) Elements encoded by JIT-C (red circles with error bars)
grow as a power law y = a - x” with b < 1 (orange dotted line),
falling increasingly below the identity line (black dashed).
(b) The encoding ratio (encoded/total) decreases monotoni-
cally from 0.67 at 5 elements to 0.60 at 8, then rises to 0.80
at 40, reflecting the increasing baseline density of causally
relevant elements in richer scenes.

reveals a graceful degradation property: the agent can reduce en-
coding substantially before task success is compromised.

The relationship between 7 and encoding count is approximately
linear in the range [0.5,4.0], with a slope of approximately —5.1
elements per unit of 7. Beyond r=4.0, the marginal reduction in
encoding per unit of 7 decreases, suggesting diminishing returns
from further relaxation.

3.4 Experiment 4: Sub-linear Scaling

We varied the total number of scene elements from 5 to 40 and
measured JIT-C encoding (Figure 4).

Key findings. A power-law fit to the encoding curve yields y =

a-xP with b < 1, confirming sub-linear growth. At 5 total elements,

Anon.

Effect of Distractor Ratio on JIT Performance
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Figure 5: JIT-C is robust to distractors. Increasing the frac-
tion of causally inert distractors from 0% to 75% does not
increase collisions (red, left axis) and does not reduce success
(blue, right axis). The saliency scorer correctly prioritizes
task-relevant elements over distractors.

JIT-C encodes 3.4 (68%); at 40 elements, it encodes 32.1 (80%). While
the absolute number increases, the gap between JIT-C and the
full-encoding baseline grows with scene size, indicating that the
framework’s abstraction advantage is most pronounced for complex
environments.

This sub-linear scaling is a cognitively plausible prediction: it
mirrors the observation that human encoding effort (as measured
by fixation counts or response times) grows with scene complexity
but at a decelerating rate [8].

3.5 Experiment 5: Behavioral Predictions

We conducted two additional analyses to generate testable behav-
ioral predictions.

Distractor robustness. We varied the fraction of scene elements
that are distractors (causally inert) from 0% to 75%, holding total
element count constant at 20 (Figure 5). JIT-C maintains near-zero
collisions across all distractor levels, demonstrating that the saliency
scorer effectively down-weights distractors. Collisions are slightly
higher (0.02) when distractor fraction is 0% (all elements are walls),
because the dense obstacle field makes any missed element conse-
quential.

Time-pressure X complexity interaction. We crossed six threshold
levels (r € {1.0,1.5,2.0,3.0, 5.0, 8.0}, modeling time pressure) with
four complexity levels (8, 15, 25, 35 elements) and measured mean
collisions (Figure 6).

This interaction is a key behavioral prediction: under time pres-
sure (modeled by high 7), errors should increase more for complex
scenes than for simple ones, because more causally relevant ele-
ments are omitted. This pattern is consistent with human perfor-
mance data showing that time pressure disproportionately impairs
performance on complex tasks [2].

3.6 Distribution of Trial Outcomes

Figure 7 shows the per-trial distribution of abstraction ratios and
collisions across strategies, revealing that JIT-C not only achieves
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Figure 6: Time-pressure X complexity interaction. (a) Mean
collisions increase with both threshold (higher r = more pres-
sure) and scene complexity, with an interaction effect: col-
lisions grow disproportionately for complex scenes under
high pressure. (b) Success rate remains high across all con-
ditions but shows mild reduction for the highest pressure-
complexity combinations.
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Figure 7: Per-trial distributions. (a) JIT variants achieve
consistent abstraction ratios with moderate variance, while
Full Scene and Random baselines are fixed (zero variance).
(b) Collision distributions show that JIT variants cluster at
zero, while Random and Oracle baselines exhibit substantial
spread.

better mean performance but also exhibits lower variance than
random baselines.

4 CONCLUSION

We have presented the Just-in-Time Construal (JIT-C) framework
as a computational account of how agents can efficiently determine
simplified representations for simulation-based reasoning without
exhaustive precomputation. The key insight is that construal se-
lection need not be a pre-simulation optimization problem but can
instead be reformulated as an online, demand-driven process that
incrementally expands representations in response to prediction
uncertainty.
Our experiments demonstrate three principal findings:

(1) Efficiency: JIT-C achieves task performance equivalent
to full-scene encoding while using 34-56% fewer encoded
elements, with the savings controlled by a single threshold
parameter 7.

(2) Graceful degradation: Increasing 7 (analogous to time
pressure) produces smooth, predictable increases in error
rather than catastrophic failure, maintaining 100% goal-
reaching success across all tested thresholds.
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(3) Scalability: Encoding cost grows sub-linearly with scene
complexity, meaning JIT-C’s advantage increases for richer
environments—precisely the regime where exhaustive con-
strual search becomes intractable.

The framework also generates testable behavioral predictions
for cognitive science: sub-linear encoding effort as a function of
complexity, robustness to distractors, and a time-pressure X com-
plexity interaction on error rates. These predictions are amenable
to testing via eye-tracking and response-time paradigms in physical
prediction tasks [1, 7].

Limitations and future work. Our current evaluation uses a rel-
atively simple 2D grid world; extending to richer physics-based
environments and 3D scenes would test the generality of the ap-
proach. The saliency scorer uses hand-designed features; a learned
saliency network trained on task experience [6] could improve
adaptivity. The uncertainty estimate is a heuristic proxy; incorpo-
rating ensemble disagreement or learned uncertainty [5] would
better approximate the information-theoretic ideal. Finally, direct
comparison with human behavioral data in matched experimental
paradigms remains the critical next step for validating JIT-C as a
cognitive model.
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