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ABSTRACT
We investigate whether large language models performing chain-
of-thought (CoT) reasoning exhibit biases analogous to human “fast
thinking” (System 1) as described by Kahneman. Through system-
atic experiments across five cognitive bias categories—anchoring,
framing, availability, base-rate neglect, and conjunction fallacy—we
compare bias rates under direct prompting versus CoT reasoning
with varying token budgets (50–2000 tokens). Our results reveal
a clear fast-thinking pattern: direct prompting exhibits bias rates
of 78–91%, while extended CoT reduces rates to 16–31%. The Fast-
Thinking Index (ratio of direct to CoT bias rates) ranges from 2.91 to
5.05 across bias types, with all comparisons statistically significant
(𝑝 < 0.001). Task complexity amplifies the gap between fast and
slow reasoning modes. These findings confirm that LLMs exhibit a
System 1-like bias under constrained reasoning and that deliberate
chain-of-thought serves as an effective System 2 analog.

1 INTRODUCTION
Kahneman’s dual-process theory [3] distinguishes between Sys-
tem 1 (fast, heuristic, bias-prone) and System 2 (slow, deliberate,
analytical) thinking. Recent work has shown that LLMs can exhibit
human-like cognitive biases [1, 2], raising the question of whether
reasoning models display analogous dual-process characteristics.

Kempt et al. [4] identify this as an open question, noting un-
certainty about whether chain-of-thought reasoning models will
exhibit a “fast thinking” bias analogous to System 1 processing. We
address this question through controlled experiments measuring
bias rates across reasoning modes and cognitive bias types.

2 RELATEDWORK
Tversky and Kahneman [5] established that human judgment un-
der uncertainty is governed by heuristics that lead to systematic
biases. Wei et al. [6] demonstrated that chain-of-thought prompting
improves LLM reasoning, suggesting a potential System 2 analog.

Recent work has found that LLMs exhibit human-like biases [1]
and that these biases can be systematically characterized [2].

3 METHODOLOGY
3.1 Bias Categories
We test five well-established cognitive biases:

(1) Anchoring: Influence of irrelevant numerical anchors
(2) Framing: Sensitivity to gain/loss presentation
(3) Availability: Over-reliance on salient examples
(4) Base-rate neglect: Ignoring prior probabilities
(5) Conjunction fallacy: Judging conjunctions as more prob-

able

3.2 Reasoning Modes
We compare four reasoning configurations:

• Direct: Immediate response (50 tokens)
• CoT-Short: Brief reasoning (150 tokens)

• CoT-Medium: Moderate reasoning (500 tokens)
• CoT-Long: Extended reasoning (2000 tokens)

Each condition is evaluated at three complexity levels (simple,
moderate, complex) with 50 trials of 100 problems each.

3.3 Fast-Thinking Index
We define the Fast-Thinking Index (FTI) as:

FTI =
𝑟direct
𝑟cot-long

(1)

where 𝑟 denotes the mean bias rate. An FTI significantly greater
than 1.2 indicates a detectable fast-thinking bias.

4 RESULTS
4.1 Bias Detection
Table 1 presents the fast-thinking bias detection results. All five
bias types show statistically significant fast-thinking patterns.

Table 1: Fast-thinking bias detection across cognitive bias
types.

Bias Type Direct CoT-Long FTI Detected

Anchoring 0.782 0.155 5.05 Yes
Framing 0.836 0.207 4.03 Yes
Availability 0.855 0.235 3.64 Yes
Base-Rate Negl. 0.883 0.271 3.26 Yes
Conj. Fallacy 0.907 0.312 2.91 Yes

4.2 Reasoning Mode Comparison
Figure 1 shows bias rates across all reasoning modes and bias types.
A clear monotonic decrease in bias rate is observed as reasoning
depth increases.

Figure 1: Bias rates across reasoningmodes for each cognitive
bias type.
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4.3 Speed-Accuracy Tradeoff
Figure 2 reveals a speed-accuracy tradeoff mirroring the human
System 1/System 2 distinction. Direct prompting is fast but biased;
extended CoT is slow but more accurate.

Figure 2: Speed-accuracy tradeoff across reasoning modes.

4.4 Complexity Effects
Figure 3 demonstrates that task complexity amplifies the gap be-
tween fast and slow reasoning, consistent with the human dual-
process framework.

Figure 3: Bias rates by task complexity level across reasoning
modes.

5 DISCUSSION
Our findings provide evidence that LLMs exhibit fast-thinking-like
biases when reasoning is constrained. The Fast-Thinking Index
consistently exceeds 2.9 across all bias types, indicating that direct
prompting produces bias rates 3–5 times higher than extended
chain-of-thought reasoning. This pattern mirrors the human dual-
process framework and suggests that CoT serves as an effective
System 2 analog.

The practical implication is that deployment contexts requiring
rapid responses should implement bias mitigation strategies, such
as minimum reasoning depth thresholds or bias-aware prompting.

6 CONCLUSION
We confirm that LLMs performing chain-of-thought reasoning ex-
hibit a measurable fast-thinking bias analogous to Kahneman’s
System 1. All five tested cognitive bias categories show statisti-
cally significant fast-thinking patterns, with bias rates 3–5 times
higher under direct prompting compared to extended CoT. These
results highlight the importance of reasoning depth in mitigating
systematic biases in LLM outputs.
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