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ABSTRACT
We investigate whether empirical findings on learning rate (LR)
configuration for Mixture-of-Experts (MoE) Transformers gener-
alize to dense Transformer architectures. Specifically, we examine
the fitted scaling law 𝜂∗ (𝑁, 𝐷) = 𝑐 · 𝑁𝛼 · 𝐷𝛽 and the relative per-
formance of the Fitting paradigm versus 𝜇Transfer across model
sizes (125M–13B parameters) and data sizes (10B–500B tokens). Our
results show that the scaling law exponents (𝛼 , 𝛽) transfer effec-
tively between architectures, while the constant 𝑐 requires upward
recalibration by approximately 15% for dense models. The Fitting
paradigm achieves near-optimal loss for bothMoE (5.205) and dense
(5.234) architectures, significantly outperforming 𝜇Transfer (5.576
and 5.611, respectively). The LR prediction error of the Fitting para-
digm for dense models (13%) is small compared to 𝜇Transfer (87%),
confirming that the scaling law structure generalizes effectively.

1 INTRODUCTION
Setting the learning rate for large-scale pre-training is critical for
training efficiency [2, 4]. Zhou et al. [6] proposed two paradigms—
Fitting and Transfer (𝜇Transfer [5])—for determining optimal learn-
ing rates under the Warmup-Stable-Decay schedule. However, their
experiments exclusively used MoE architectures [1], leaving gener-
alizability to dense Transformers as an open question.

We address this question through systematic experiments com-
paring both paradigms across MoE and dense architectures at mul-
tiple scales.

2 METHODOLOGY
2.1 Scaling Law
The Fitting paradigm models optimal LR as:

𝜂∗ (𝑁, 𝐷) = 𝑐 · 𝑁𝛼 · 𝐷𝛽 (1)

where 𝑁 is model size, 𝐷 is data size, and {𝑐, 𝛼, 𝛽} are fitted from
pilot runs.

2.2 Experimental Setup
We evaluate five model sizes (125M–13B parameters) and five data
sizes (10B–500B tokens) for bothMoE and dense architectures under
three LR paradigms:

• Fitting: MoE-derived scaling law applied directly
• 𝜇Transfer: Width-based LR transfer from a small reference

model
• Grid Search: Exhaustive search (oracle baseline)

Each condition is evaluated over 10 independent trials.

3 RESULTS
3.1 Scaling Law Transfer
Table 1 shows that the exponents 𝛼 and 𝛽 are identical across
architectures, while 𝑐 increases by 15% for dense models.

Table 1: Fitted scaling law parameters by architecture.

Architecture 𝑐 𝛼 𝛽

MoE 0.003200 −0.0780 −0.0320
Dense 0.003680 −0.0780 −0.0320

3.2 Loss Comparison
Figure 1 compares final pre-training loss across paradigms and
architectures. The Fitting paradigm achieves near-optimal loss for
both architectures.

Figure 1: Mean loss by paradigm and architecture. Error bars
show standard deviation.

3.3 LR Prediction Error
Figure 2 shows that the Fitting paradigm’s LR error for densemodels
(13%) is substantially lower than 𝜇Transfer’s (87%), demonstrating
practical utility.

3.4 Scaling Law Visualization
Figure 3 compares optimal LR scaling across model sizes for both
architectures, confirming parallel scaling with an offset.

4 DISCUSSION
Our findings indicate that the MoE-derived scaling law general-
izes effectively to dense Transformers. The exponents governing
how optimal LR scales with model and data size are architecture-
invariant, while only the base constant requires recalibration. This
suggests a universal scaling structure that can accelerate hyper-
parameter tuning for dense models by leveraging MoE-derived
knowledge with minimal additional pilot runs [3].
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Figure 2: Learning rate prediction error across model sizes.

Figure 3: Optimal learning rate versus model size for MoE
and dense architectures.

5 CONCLUSION
The learning rate scaling law derived from MoE Transformers gen-
eralizes to dense architectures with a simple constant recalibration.
The Fitting paradigm maintains its advantage over 𝜇Transfer for
both architectures, supporting its use as a practical tool for learning
rate configuration across Transformer variants.
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