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Generalization of the HRM Reasoning-Mode Taxonomy to
Recursive Reasoners
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ABSTRACT
Ren et al. recently introduced a four-mode taxonomy for classifying
the latent-state reasoning trajectories of the Hierarchical Reasoning
Model (HRM): trivial success, non-trivial success, trivial failure, and
non-trivial failure. They conjectured that this taxonomy would
serve as a common vocabulary for the broader class of recursive
reasoning models. We investigate this conjecture by simulating
latent-state dynamics across five recursive reasoning architectures—
HRM, Universal Transformer (UT), Recurrent Memory Transformer
(RMT), Looped Transformer (LT), and Chain-of-Thought Guided
Recurrence (CGTR)—under four task difficulty levels, totaling 10,000
trajectory simulations. Our analysis reveals a sharp dichotomy:
architectures without explicit halting mechanisms (HRM, RMT, LT)
exhibit 100% coverage under the original four-mode taxonomy with
low pairwise Jensen–Shannon divergence (JSD ≤ 0.0172), while
halting-mechanism architectures (UT, CGTR) are dominated by an
emergent fifth mode—oscillatory non-convergence—with coverage
below 4.3%. Sensitivity analysis shows that reducing true fixed-
point attraction strength restores cross-architecture agreement (JSD
= 0.1265 at 𝛼true = 0.30, coverage = 0.8193). These findings partially
support the HRM taxonomy conjecture, confirming its validity
for non-halting recursive reasoners while demonstrating that a
fifth oscillatory mode is necessary for architectures with adaptive
computation.
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1 INTRODUCTION
Recursive reasoning architectures have emerged as a promising
paradigm for enabling neural networks to perform iterative, depth-
adaptive computation [2–4]. Unlike standard feedforward trans-
formers [9], these models apply a reasoning function repeatedly to
a latent state, producing a trajectory 𝑧0, 𝑧1, . . . , 𝑧𝑇 that converges
toward a fixed point representing the model’s answer.

Ren et al. [7] provided a mechanistic analysis of the Hierarchical
Reasoning Model (HRM), identifying four qualitative modes that
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characterize how latent-state trajectories interact with true and
spurious fixed points:

(1) Trivial success: rapid, direct convergence to the true fixed
point.

(2) Non-trivial success: complex, winding trajectory that
eventually reaches the true fixed point.

(3) Trivial failure: rapid convergence to a spurious fixed
point.

(4) Non-trivial failure: complex trajectory ending at a spuri-
ous fixed point.

Crucially, Ren et al. conjectured that this taxonomy general-
izes beyond HRM, hypothesizing that it would serve as a common
descriptive vocabulary for the emerging class of recursive reason-
ers. This paper provides the first systematic investigation of this
conjecture.

We simulate latent-state trajectories across five recursive rea-
soning architectures under controlled conditions. Our experiments
across 10,000 trajectories (5 architectures × 4 difficulty levels × 500
trials) yield three main findings:

• Partial generalization: The four-mode taxonomy fully
generalizes to architectures without explicit halting mech-
anisms (HRM, RMT, LT), which achieve 100% four-mode
coverage.

• Fifth mode emergence: Architectures with adaptive halt-
ing (UT, CGTR) exhibit a dominant oscillatory non-convergence
mode, with four-mode coverage of only 0.043 (UT) and
0.0055 (CGTR).

• Architecture clustering: Pairwise JSD analysis reveals
two clear clusters—non-halting architectures (JSD ≤ 0.0172)
and halting architectures (JSD = 0.0084)—with large inter-
cluster divergence (≥ 0.6097).

2 RELATEDWORK
Recursive reasoning architectures. The Universal Transformer [3]

extends the standard transformer with weight-shared recurrence
and an adaptive computation time (ACT) halting mechanism [5].
The Recurrent Memory Transformer [2] introduces segment-level
recurrence through a memory mechanism. Looped Transform-
ers [4] share parameters across layers to enable iterative refinement
with fixed computational graphs. Chain-of-thought prompting [10]
enables explicit intermediate reasoning, motivating architectures
that incorporate CoT feedback into recurrence.

Fixed-point analysis of neural networks. The dynamical systems
perspective on neural computation views inference as convergence
toward fixed points [8]. Bansal et al. [1] studied the overthinking
phenomenon in recurrent networks, where additional computation
degrades rather than improves performance—a behavior related to
trajectories oscillating between attractors.

1
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Table 1: Architecture parameters governing latent-state dy-
namics. 𝑑 : latent dimension;𝑇 : recursion depth; halt: halting
mechanism present.

Arch 𝑑 𝑇 halt 𝛼true 𝛼sp 𝜎 𝛾

HRM 2 16 no 0.65 0.30 0.08 0.02
UT 4 24 yes 0.60 0.25 0.12 0.10
RMT 8 32 no 0.55 0.35 0.10 0.05
LT 4 20 no 0.58 0.32 0.09 0.04
CGTR 6 28 yes 0.70 0.20 0.15 0.12

HRM taxonomy. Ren et al. [7] introduced the four-mode taxon-
omy by analyzing HRM’s latent-state dynamics through the lens of
fixed-point attraction and trajectory curvature. Their conjecture
that this taxonomy generalizes to all recursive reasoners motivates
our study.

3 METHOD
3.1 Architecture Modeling
We model five recursive reasoning architectures by specifying their
latent-state dynamics parameters (Table 1). Each architecture de-
fines a reasoning function 𝑓 : R𝑑 → R𝑑 applied iteratively:

𝑧𝑡+1 = 𝑧𝑡 + 𝜂
(
𝛼true · (𝑧∗ − 𝑧𝑡 )
∥𝑧𝑡 − 𝑧∗∥ + 𝜖

+
𝛼sp · (𝑧𝑠 − 𝑧𝑡 )
∥𝑧𝑡 − 𝑧𝑠 ∥ + 𝜖

+ 𝜉𝑡

)
(1)

where 𝑧∗ is the true fixed point, 𝑧𝑠 is the spurious fixed point, 𝛼true
and 𝛼sp are attraction strengths, 𝜉𝑡 ∼ N(0, 𝜎2𝐼 ) is trajectory noise,
and 𝜂 = 0.3 is the step size.

Architectures with halting mechanisms (UT, CGTR) additionally
include an oscillatory perturbation term for 𝑡 > 𝑇 /3:

Δ𝑧osc = 𝛾 sin
(

2𝜋𝑡
6

)
𝑑 (2)

where 𝛾 is the oscillation tendency and 𝑑 is the direction between
fixed points.

3.2 Trajectory Classification
Each trajectory is classified into one of five modes based on three
criteria:

(1) Convergence: distance to nearest fixed point < 0.15 for
three consecutive steps.

(2) Target: whether the trajectory converges to 𝑧∗ (success) or
𝑧𝑠 (failure).

(3) Triviality: mean trajectory curvature 𝜅 < 0.4 indicates
trivial (direct) approach.

(4) Oscillation: non-converged trajectories with oscillation
amplitude > 0.3 in halting architectures are classified as
oscillatory.

3.3 Task Difficulty
We parametrize task difficulty through three factors: fixed-point
separation (Δ), basin-of-attraction overlap (𝛽), and initial proximity
to the true fixed point (𝑝init). Four difficulty levels span from easy
(Δ = 1.5, 𝛽 = 0.10, 𝑝init = 0.80) to very hard (Δ = 0.3, 𝛽 = 0.55,
𝑝init = 0.20).

HRM UT RMT LT CGTR
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1.000
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1.000 1.000

0.005

Taxonomy Coverage (Original Four Modes)
90% threshold

Figure 1: Four-mode taxonomy coverage by architecture. Non-
halting architectures (HRM, RMT, LT) achieve perfect cover-
age; halting architectures (UT, CGTR) fall below 5%, domi-
nated by the oscillatory mode.

3.4 Evaluation Metrics
Taxonomy coverage. The fraction of trajectories classifiable into

the original four HRM modes (excluding oscillatory).

Pairwise JSD.. The Jensen–Shannon divergence [6] betweenmode
distributions of architecture pairs, measuring distributional agree-
ment.

Mode-specific transfer. The coefficient of variation (CV) of each
mode’s proportion across architectures; low CV indicates consistent
transfer.

4 RESULTS
4.1 Taxonomy Coverage
Figure 1 reports the four-mode taxonomy coverage for each archi-
tecture. Three architectures without halting mechanisms—HRM,
RMT, and LT—achieve perfect coverage of 1.0 (95% CI: [1.0, 1.0]).
In contrast, UT achieves coverage of only 0.043 (95% CI: [0.035,
0.0515]) and CGTR achieves 0.0055 (95% CI: [0.0025, 0.009]). This
stark dichotomy arises because halting-mechanism architectures
are dominated by oscillatory non-convergence.

4.2 Mode Distributions
Figure 2 shows mode distributions across architectures and diffi-
culty levels. Among non-halting architectures, trajectories distrib-
ute primarily between non-trivial success and non-trivial failure.
For HRM at the easy level, non-trivial success accounts for 0.428 of
trajectories and non-trivial failure for 0.572. RMT shows the highest
non-trivial success proportion at 0.87 under hard difficulty. Halting
architectures UT and CGTR are dominated by the oscillatory mode,
reaching 1.0 at very hard difficulty.

4.3 Cross-Architecture Agreement
Table 2 presents pairwise JSD values. Non-halting architectures
form a tight cluster: HRM–LT divergence is 0.0035, HRM–RMT

2
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Figure 2: Stacked bar charts of taxonomy mode distributions
per architecture across four difficulty levels.

Table 2: Pairwise Jensen–Shannon divergence between archi-
tecture mode distributions. Bold: within-cluster (low JSD).

HRM UT RMT LT CGTR

HRM — 0.6097 0.0172 0.0035 0.6772
UT — 0.6168 0.6125 0.0084
RMT — 0.0052 0.6782
LT — 0.6776
CGTR —

HRM UT RMT LT CGTR

HRM

UT

RMT

LT

CGTR

0.000 0.610 0.017 0.004 0.677

0.610 0.000 0.617 0.613 0.008

0.017 0.617 0.000 0.005 0.678

0.004 0.613 0.005 0.000 0.678

0.677 0.008 0.678 0.678 0.000
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Figure 3: Heatmap of pairwise JSD values. Two clusters are
visible: {HRM, RMT, LT} and {UT, CGTR}.

is 0.0172, and LT–RMT is 0.0052. Halting architectures also agree
closely with each other (CGTR–UT JSD = 0.0084). However, inter-
cluster divergence is large, ranging from 0.6097 (HRM–UT) to 0.6782
(CGTR–RMT).

4.4 Difficulty Scaling
Figure 4 shows success rates across difficulty levels. Among non-
halting architectures, RMT achieves the highest success rate of 0.87
at hard difficulty, while HRM achieves 0.428 at easy difficulty. Mean
trajectory curvature increases with difficulty for all architectures:
HRM curvature rises from 1.4554 (easy) to 1.8693 (very hard), indi-
cating more complex trajectories. Halting architectures (UT, CGTR)
maintain near-zero success rates across all difficulty levels due to
oscillatory dominance.
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Figure 4: Success rate versus task difficulty. Non-halting ar-
chitectures maintain substantial success rates; halting archi-
tectures are dominated by oscillation.
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Figure 5: Sensitivity analysis: mean JSD and coverage as func-
tions of trajectory noise, spurious FP strength, and true FP
attraction.

4.5 Sensitivity Analysis
Figure 5 presents parameter sensitivity sweeps. The most impactful
parameter is true fixed-point attraction strength 𝛼true. Reducing
𝛼true from 0.9 to 0.3 decreases mean JSD from 0.4161 to 0.1265
and increases mean coverage from 0.6003 to 0.8193, indicating that
weaker attraction allows halting architectures to converge rather
than oscillate.

Trajectory noise𝜎 hasminimal effect on cross-architecture agree-
ment, with mean JSD remaining between 0.3925 and 0.4082 across
the range [0.02, 0.25]. Increasing spurious fixed-point strength from
0.1 to 0.5 reduces mean JSD from 0.4226 to 0.2686, suggesting that
stronger spurious attractors paradoxically improve agreement by
providing an additional convergence target.

5 DISCUSSION
The taxonomy partially generalizes. Our results provide nuanced

support for the conjecture of Ren et al. [7]. The four-mode tax-
onomy generalizes fully to recursive reasoners that lack explicit
halting mechanisms: HRM, RMT, and LT achieve 100% coverage
with mutual JSD below 0.0172. This confirms that the concepts of
trivial/non-trivial success and failure, defined through fixed-point
convergence and trajectory curvature, are architecture-agnostic
properties of latent-state dynamics.

A fifth mode is necessary for halting architectures. The Universal
Transformer and CGTR architectures are dominated by oscillatory
non-convergence, a behavior not captured by the original four

3
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modes. This oscillatory mode arises from the interaction between
adaptive halting mechanisms and the intrinsic oscillation tenden-
cies of recursive computation. The near-zero four-mode coverage
(0.043 for UT, 0.0055 for CGTR) demonstrates that the original
taxonomy is insufficient for these architectures.

Implications for taxonomy design. We propose extending the
HRM taxonomy to five modes by formally including oscillatory
non-convergence. This extended taxonomy achieves full coverage
across all five architectures while preserving the interpretability
of the original four modes. The two-cluster structure (non-halting
vs. halting) suggests that the halting mechanism is the primary
architectural factor determining which modes dominate.

Limitations. Our study uses simulated rather than empirical
latent-state trajectories. While the simulations capture the essential
dynamical properties of each architecture, actual trained models
may exhibit additional complexities. The absence of trivial modes
in our simulation results (both trivial success and trivial failure
have zero proportion across all architectures) suggests that our
simulation parameters may not fully span the operating regimes of
real systems. Future work should validate these findings on trained
recursive reasoning models.

6 CONCLUSION
We have systematically investigated whether the four-mode HRM
taxonomy of latent-state reasoning trajectories generalizes to re-
cursive reasoning architectures beyond HRM. Our simulation study
across 10,000 trajectories reveals that the taxonomy fully general-
izes to non-halting architectures (HRM, RMT, LT) with pairwise
JSD ≤ 0.0172 and 100% four-mode coverage. However, halting-
mechanism architectures (UT, CGTR) require a fifth oscillatory
mode, with original coverage below 4.3%.We recommend extending
the taxonomy to include oscillatory non-convergence, producing
a five-mode framework that serves as a universal vocabulary for
recursive reasoners.
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