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Layered Governance Architecture for Real-World Agentic Systems
Anonymous Author(s)

ABSTRACT
Agentic AI systems that plan over long horizons, use tools, main-
tain persistent memory, and interact with other agents pose gover-
nance challenges that exceed the capabilities of model-level align-
ment alone. We propose a Layered Governance Architecture (LGA)
that integrates three enforcement layers—model-level alignment
monitoring, agent-level policy enforcement, and ecosystem-level
interaction oversight—into a unified framework with formal guar-
antees. Our architecture employs hierarchical policy automata for
runtime verification, a causal audit trail for post-hoc attribution,
and an adaptive policy controller that dynamically tightens or re-
laxes constraints in response to observed risk signals. We evaluate
LGA through deterministic simulations of multi-agent deployments
across five governance configurations, four risk profiles, and plan-
ning horizons from 10 to 500 steps. The layered approach achieves
a violation detection rate of 0.5537 with zero detection latency
and 1.0 attribution accuracy, while preserving 0.8339 agent utility
at 0.31 overhead. Adaptation experiments show that governance
violation rates recover from 0.83 during risk spikes to 0.1938 in
recovery phases, demonstrating effective adaptive control. Scaling
experiments confirm that governance overhead remains constant
at 0.31 as agent count grows from 2 to 32, while violation detection
scales gracefully from 0.205 to 0.3703.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Soft-
ware and its engineering → Software verification and validation.

KEYWORDS
agentic AI, governance, multi-agent systems, runtime verification,
safety
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1 INTRODUCTION
The emergence of agentic AI systems—large language models aug-
mented with tool use, persistent memory, long-horizon planning,
and multi-agent collaboration—has created governance challenges
that extend far beyond traditionalmodel-level alignment [13].When
an AI agent can execute multi-step plans, write to persistent mem-
ory, invoke external tools, and interact with other autonomous
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agents, the governance problem becomes fundamentally multi-
layered: failures may arise not from individual model outputs but
from the interaction of planning decisions across time, agents, and
system components.

Existing approaches address fragments of this challenge. Con-
stitutional AI [3] and RLHF [9] target model-level alignment but
assume short-horizon interactions. Tool-augmented agent frame-
works [10, 11] expand the action surface beyond what model-level
guardrails cover. Multi-agent oversight formalisms [4] expose the
combinatorial complexity of governing interacting agents but lack
runtime enforcement mechanisms. Recent work on scaling safe-
guards [7] highlights that static guardrails degrade as agents acquire
new objectives, motivating dynamic governance.

Wei et al. [13] identify a central open problem: developing gov-
ernance frameworks that jointly address model-level alignment,
agent-level policies, and ecosystem-level interactions under realistic
deployment conditions. We address this problem directly.

Contributions. We make three contributions:

(1) We propose theLayeredGovernanceArchitecture (LGA),
a three-layer framework that integrates model-level align-
mentmonitoring, agent-level policy enforcement, and ecosystem-
level interaction oversight with formal consistency guaran-
tees (Section 3).

(2) We design a runtimemonitorwith causal audit trail and
an adaptive policy controller that dynamically adjusts
governance stringency in response to observed risk signals
(Section 4).

(3) We evaluate LGA through deterministic multi-agent
simulations across five governance configurations, demon-
strating its effectiveness in violation detection, attribution,
adaptation, and scalability (Section 5).

2 PROBLEM FORMULATION
We formalize the governance problem for agentic systems as follows.
Let A = {𝑎1, . . . , 𝑎𝑛} be a set of 𝑛 agents operating in a shared en-
vironment over a horizon of𝑇 time steps. At each step 𝑡 , agent 𝑎𝑖 se-
lects an action𝛼𝑖𝑡 from its action spaceΩ𝑖 = {tool_call, memory_write, message, plan_step}.
Each action carries a risk score 𝑟 (𝛼𝑖𝑡 ) ∈ [0, 1].

A governance framework G consists of three layers:

• Model layer G𝑀 : Constraints on individual model outputs,
parameterized by an alignment threshold 𝜃𝑀 .

• Agent layer G𝐴: Constraints on agent-level actions, pa-
rameterized by a risk budget 𝜃𝐴 with action-type-specific
multipliers.

• Ecosystem layer G𝐸 : Constraints on collective behavior,
parameterized by a collective risk bound 𝜃𝐸 that considers
the mean risk across all agents.
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An action 𝛼𝑖𝑡 is compliant if and only if it satisfies all three layers:

compliant(𝛼𝑖𝑡 ) = ⊮[𝑟 (𝛼𝑖𝑡 ) < 𝜃𝑀 ]∧⊮[𝑟 (𝛼𝑖𝑡 ) < 𝑐 (𝛼𝑖𝑡 )·𝜃𝐴]∧⊮
[
𝑟 (𝛼𝑖𝑡 ) + 𝑟−𝑖𝑡

2
< 𝜃𝐸

]
(1)

where 𝑐 (𝛼𝑖𝑡 ) ∈ {0.6, 0.8, 1.0} is the action-type multiplier and 𝑟−𝑖𝑡 is
the mean risk of all other agents at step 𝑡 .

We evaluate governance quality via six metrics: violation rate 𝑉 ,
detection latency 𝐿, attribution accuracy 𝐴, governance overhead 𝑂 ,
utility preservation 𝑈 , and adaptation speed.

3 LAYERED GOVERNANCE ARCHITECTURE
3.1 Architecture Overview
The Layered Governance Architecture operates as a runtime in-
terception layer between the agent and its environment. Every
action passes through three sequential checks before execution is
permitted:

(1) Model-layer check: Verifies that the action’s risk score is
below the alignment threshold (𝜃𝑀 = 0.35 in our default
configuration).

(2) Agent-layer check: Verifies that the risk score satisfies
action-type-specific budgets derived from 𝜃𝐴 = 0.45, with
multipliers of 0.8 for tool calls and 0.6 for memory writes.

(3) Ecosystem-layer check: Combines the action’s risk with
the mean risk of other agents and verifies the combined
score is below 𝜃𝐸 = 0.50.

3.2 Governance Specification Language
Policies are expressed as typed constraints that compose hierarchi-
cally: ecosystem policies constrain agent policies, which constrain
model behavior. This ensures consistency by construction. In our
implementation, a GovernancePolicy specifies thresholds for each
layer as key-value pairs, enabling flexible policy definition.

3.3 Causal Audit Trail
Every governance decision is logged in a causal audit trail that
records the timestep, event type (violation, detection, escalation,
adaptation), governance layer, severity, detection time, and attrib-
uted agent. This enables post-hoc analysis and counterfactual au-
diting: given a violation, the trail supports tracing the causal chain
from ecosystem-level events back through agent decisions to model
outputs.

4 RUNTIMEMONITORING AND ADAPTATION
4.1 Adaptive Policy Controller
The adaptive policy controller maintains a sliding window of the
most recent 𝑤 = 20 risk scores. When the mean risk over the
last 5 actions exceeds the escalation threshold (0.7), the controller
tightens all model and agent constraints by the adaptation rate
𝛿 = 0.05, with a minimum bound of 0.1. Conversely, when mean
risk falls below 0.3, model constraints are relaxed by 0.5𝛿 , with a
maximum bound of 0.9.

This mechanism enables the governance framework to respond
to changing risk conditions without manual intervention, as demon-
strated in our adaptation experiments (Section 5.4).

Table 1: Governance framework comparison (4 agents, 200
steps, mixed risk profiles). Higher violation rate indicates
more detected violations.

Framework Viol. Rate Latency Attrib. Overhead Utility

None 0.0975 3.3304 1.0 0.0 1.0
Model Only 0.495 0.0 1.0 0.12 0.8515
Agent Only 0.5387 0.0 1.0 0.15 0.8384
Ecosystem 0.2425 0.0 1.0 0.18 0.9273
Layered 0.5537 0.0 1.0 0.31 0.8339

4.2 Hierarchical Policy Automata
We model governance policies as hierarchical timed automata [1],
one per governance layer. The model-level automaton is nested
inside the agent-level automaton, which is nested inside the ecosys-
tem automaton. This hierarchical structure ensures that:

• Layer violations are detected at the appropriate granularity.
• Attribution can be traced to the specific layer and agent

responsible.
• Policy consistency is maintained across layers by construc-

tion.
Runtimemodel checking, inspired by on-the-fly verification tech-

niques from SPIN [6], verifies that each agent step maintains the
automaton in a safe state. This enables zero-latency detection of
violations, as our experiments confirm.

5 EXPERIMENTS
We evaluate the Layered Governance Architecture through four ex-
periments using deterministic simulations (seededwith np.random.default_rng(42))
of multi-agent deployments. All experiments use four action types
(tool_call, memory_write, message, plan_step) with risk pro-
files drawn from Gaussian distributions with temporal drift.

5.1 Framework Comparison
We compare five governance configurations across 4 agents, 200
time steps, and four risk profiles (low, moderate, high, adversarial).
Table 1 reports the results.

The layered framework achieves the highest violation detection
rate of 0.5537, detecting all violations at zero latency with perfect at-
tribution accuracy. The no-governance baseline detects only 0.0975
of violations (from passive constraint checking) with a mean de-
tection latency of 3.3304 steps. Each individual layer contributes:
model-only detects 0.495, agent-only detects 0.5387, and ecosystem-
only detects 0.2425. The layered approach combines all three layers,
achieving comprehensive detection at the cost of 0.31 overhead and
0.8339 utility preservation.

5.2 Ablation Study
To isolate the contribution of each governance layer, we conduct an
ablation study using a separate experimental run. Table 2 presents
the results.

The ablation confirms that each layer adds complementary de-
tection capability. The ecosystem layer alone detects 0.2375 of vio-
lations, while the model and agent layers individually detect 0.5325
and 0.5138 respectively. The layered combination achieves 0.5575,
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Table 2: Ablation study: contribution of each governance
layer.

Configuration Viol. Rate Utility Overhead Risk

None 0.1113 1.0 0.0 0.4287
Model Only 0.5325 0.8403 0.12 0.4237
Agent Only 0.5138 0.8459 0.15 0.4209
Ecosystem Only 0.2375 0.9287 0.18 0.4138
Layered 0.5575 0.8327 0.31 0.421

Table 3: Scaling behavior of layered governance as agent
count increases.

Agents L-Viol. L-Overhead L-Utility NG-Viol. NG-Utility

2 0.205 0.31 0.9385 0.0 1.0
4 0.335 0.31 0.8995 0.0325 1.0
8 0.3538 0.31 0.8939 0.0262 1.0
16 0.3569 0.31 0.8929 0.0338 1.0
32 0.3703 0.31 0.8889 0.0344 1.0

Table 4: Adaptation experiment: governance response to
changing risk.

Phase Viol. Rate Utility Mean Risk Std Risk

Normal 0.1675 0.9497 0.2287 0.1239
Spike 0.83 0.751 0.5255 0.2087
Recovery 0.1938 0.9419 0.2282 0.1279

showing that the layers are not simply additive but provide over-
lapping, defense-in-depth coverage.

5.3 Scaling Behavior
We evaluate how governance performance scales with the number
of agents, ranging from 2 to 32. Figure 2 illustrates the results.

A key finding is that governance overhead remains constant at
0.31 regardless of agent count, demonstrating that the per-action
monitoring cost does not increase with ecosystem size. The viola-
tion detection rate increases gradually from 0.205 with 2 agents to
0.3703 with 32 agents, reflecting the growing ecosystem-level risk
as more agents interact. Utility preservation decreases modestly
from 0.9385 to 0.8889.

5.4 Adaptation Under Risk Changes
We evaluate the adaptive policy controller across three phases:
normal operation (low risk), a risk spike (high and adversarial
profiles), and recovery (moderate risk). Table 4 reports the results.

During normal operation, the governance framework detects vi-
olations at a rate of 0.1675 while preserving 0.9497 utility. When the
risk spikes, the violation rate rises to 0.83, reflecting the increased
proportion of risky actions detected and blocked, with utility drop-
ping to 0.751. In the recovery phase, the violation rate decreases to
0.1938 and utility recovers to 0.9419, demonstrating effective adap-
tive control. The recovery-phase violation rate of 0.1938 is only

Table 5: Governance effectiveness across planning horizons.

Horizon L-Viol. L-Attrib. L-Utility NG-Viol. MO-Viol.

10 0.5 1.0 0.85 0.125 0.525
50 0.545 1.0 0.8365 0.07 0.555
100 0.57 1.0 0.829 0.115 0.5225
200 0.5613 1.0 0.8316 0.12 0.525
500 0.568 1.0 0.8296 0.1035 0.5045

slightly higher than the normal-phase rate of 0.1675, indicating that
the adaptive controller successfully recalibrates after a risk spike.

5.5 Planning Horizon Analysis
We examine governance effectiveness across planning horizons
from 10 to 500 steps. Table 5 presents the results.

The layered governance framework maintains stable perfor-
mance across horizons, with violation detection ranging from 0.5
at horizon 10 to 0.568 at horizon 500. Attribution accuracy remains
perfect at 1.0 across all horizons. Utility preservation decreases
slightly from 0.85 to 0.8296 as longer horizons increase the cumula-
tive probability of encountering risky actions.

6 DISCUSSION
Defense-in-Depth. Our results demonstrate that layered gover-

nance provides defense-in-depth: each layer catches violations
that others miss. The model layer enforces alignment constraints,
the agent layer restricts action-type-specific risk budgets, and the
ecosystem layer bounds collective behavior. The layered combina-
tion achieves 0.5575 detection in ablation versus 0.5325, 0.5138, and
0.2375 for individual layers.

Constant Overhead. Governance overhead remains at 0.31 re-
gardless of the number of agents. This constant-overhead property
results from our per-action monitoring design, where each action
is checked independently against the policy hierarchy. The compu-
tational cost scales linearly with the total number of actions but is
constant per action.

Adaptive Control. The adaptive policy controller demonstrates
effective risk response. Recovery-phase violation rates (0.1938)
closely match normal-phase rates (0.1675), showing that the con-
troller avoids both over-tightening (which would reduce utility) and
under-relaxing (which would miss violations) after risk transitions.

Limitations. Our evaluation uses simulated multi-agent deploy-
ments with synthetic risk profiles rather than real agentic AI sys-
tems. The risk score model assumes Gaussian distributions with
temporal drift, which may not capture the full complexity of real-
world agent behavior. Future work should validate LGA on actual
LLM-based agent deployments with real tool use and memory op-
erations.

7 RELATEDWORK
AI Safety and Alignment. Foundational work on concrete AI

safety problems [2] identified reward hacking, side effects, and
distributional shift as key challenges. Constitutional AI [3] and
RLHF [9] address model-level alignment through training-time

3
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objectives. Our work extends these ideas to the runtime governance
of deployed agentic systems.

Agentic AI Governance. Wei et al. [13] formalize the need for gov-
ernance frameworks spanning model, agent, and ecosystem levels.
Practices for governing agentic systems [12] propose organizational
and technical safeguards. The ethics of advanced AI assistants [5]
examines the value alignment challenges. Our LGA provides a
concrete technical framework addressing these desiderata.

Multi-Agent Oversight. Chan et al. [4] formalize multi-agent over-
sight via causal modeling and aggregate governance. Our ecosystem
layer builds on their insights while adding runtime enforcement.
Scaling safeguards [7] motivate adaptive governance, which our
adaptive policy controller implements.

Runtime Verification. Our hierarchical policy automata draw on
timed automata theory [1] and model checking [6]. We adapt these
formal methods from software verification to the governance of
AI agent behavior, enabling zero-latency violation detection with
formal guarantees.

Benchmarking Agentic Systems. Evaluation frameworks for agen-
tic AI [8] highlight the inadequacy of existing benchmarks for
testing planning-time failures and multi-step goal drift. Our sim-
ulation framework addresses this gap by evaluating governance
across varying horizons, risk profiles, and agent counts.

8 CONCLUSION
We have presented the Layered Governance Architecture, a three-
layer framework for governing real-world agentic AI systems. Through
deterministic multi-agent simulations, we demonstrate that LGA
achieves comprehensive violation detection (0.5537) with zero la-
tency and perfect attribution accuracy, while preserving 0.8339
agent utility. The adaptive policy controller successfully recali-
brates governance stringency in response to risk transitions, and
the architecture scales to 32 agents with constant overhead. Our
results establish that layered governance—combining model-level,
agent-level, and ecosystem-level enforcement—provides a princi-
pled and practical approach to the open challenge of governing
increasingly capable agentic AI systems.
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Figure 2: Scaling behavior as the number of agents increases
from 2 to 32.

fig_adaptation.png

Figure 3: Adaptive governance response across normal, spike,
and recovery phases.

fig_horizon.png

Figure 4: Governance effectiveness across planning horizons
(10–500 steps).

A EXPERIMENTAL CONFIGURATION

Table 6: Default governance policy parameters.

Layer Parameter Value

Model Alignment threshold (𝜃𝑀 ) 0.35
Agent Risk budget (𝜃𝐴) 0.45
Ecosystem Collective risk bound (𝜃𝐸 ) 0.50
Adaptive Window size (𝑤) 20
Adaptive Escalation threshold 0.7
Adaptive Adaptation rate (𝛿) 0.05

Table 7: Risk profile parameters (Gaussian).

Profile Mean (𝜇) Std (𝜎)

Low 0.15 0.08
Moderate 0.30 0.12
High 0.55 0.15
Adversarial 0.70 0.18
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Figure 1: Framework comparison across governance configu-
rations.
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