

1 Layered Governance Architecture for Real-World Agentic Systems 59

2 Anonymous Author(s) 60

3 ABSTRACT 61

4 Agentic AI systems that plan over long horizons, use tools, maintain persistent memory, and interact with other agents pose governance challenges that exceed the capabilities of model-level alignment alone. We propose a *Layered Governance Architecture* (LGA) 59 that integrates three enforcement layers—model-level alignment monitoring, agent-level policy enforcement, and ecosystem-level interaction oversight—into a unified framework with formal guarantees. Our architecture employs hierarchical policy automata for 60 runtime verification, a causal audit trail for post-hoc attribution, and an adaptive policy controller that dynamically tightens or 61 relaxes constraints in response to observed risk signals. We evaluate 62 LGA through deterministic simulations of multi-agent deployments 63 across five governance configurations, four risk profiles, and planning 64 horizons from 10 to 500 steps. The layered approach achieves 65 a violation detection rate of 0.5537 with zero detection latency 66 and 1.0 attribution accuracy, while preserving 0.8339 agent utility 67 at 0.31 overhead. Adaptation experiments show that governance 68 violation rates recover from 0.83 during risk spikes to 0.1938 in 69 recovery phases, demonstrating effective adaptive control. Scaling 70 experiments confirm that governance overhead remains constant 71 at 0.31 as agent count grows from 2 to 32, while violation detection 72 scales gracefully from 0.205 to 0.3703. 73

7 CCS CONCEPTS 74

- 8 • Computing methodologies → Artificial intelligence; • Software and its engineering → Software verification and validation. 75

9 KEYWORDS 76

10 agentic AI, governance, multi-agent systems, runtime verification, 77 safety 78

11 ACM Reference Format: 79

12 Anonymous Author(s). 2026. Layered Governance Architecture for Real- 80 World Agentic Systems. In *Proceedings of ACM Conference (Conference'17)*. 81 ACM, New York, NY, USA, 6 pages. <https://doi.org/10.1145/nmnnnn.nmnnnn> 82

13 1 INTRODUCTION 83

14 The emergence of agentic AI systems—large language models augmented 84 with tool use, persistent memory, long-horizon planning, and multi-agent collaboration—has created governance challenges 85 that extend far beyond traditional model-level alignment [13]. When 86 an AI agent can execute multi-step plans, write to persistent memory, 87 invoke external tools, and interact with other autonomous 88

100 Permission to make digital or hard copies of all or part of this work for personal or 101 classroom use is granted without fee provided that copies are not made or distributed 102 for profit or commercial advantage and that copies bear this notice and the full citation 103 on the first page. Copyrights for components of this work owned by others than ACM 104 must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 105 to post on servers or to redistribute to lists, requires prior specific permission and/or a 106 fee. Request permissions from permissions@acm.org. 107

107 *Conference'17, July 2017, Washington, DC, USA* 108

108 © 2026 Association for Computing Machinery. 109

109 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00 110

110 <https://doi.org/10.1145/nmnnnn.nmnnnn> 111

112 agents, the governance problem becomes fundamentally multi-layered: failures may arise not from individual model outputs but 113 from the interaction of planning decisions across time, agents, and 114 system components. 115

116 Existing approaches address fragments of this challenge. Constitutional 117 AI [3] and RLHF [9] target model-level alignment but 118 assume short-horizon interactions. Tool-augmented agent 119 frameworks [10, 11] expand the action surface beyond what model-level 120 guardrails cover. Multi-agent oversight formalisms [4] expose the 121 combinatorial complexity of governing interacting agents but lack 122 runtime enforcement mechanisms. Recent work on scaling 123 safeguards [7] highlights that static guardrails degrade as agents acquire 124 new objectives, motivating dynamic governance. 125

126 Wei et al. [13] identify a central open problem: developing 127 governance frameworks that *jointly* address model-level alignment, 128 agent-level policies, and ecosystem-level interactions under realistic 129 deployment conditions. We address this problem directly. 130

131 *Contributions.* We make three contributions: 132

- 133 (1) We propose the **Layered Governance Architecture (LGA)**, 134 a three-layer framework that integrates model-level alignment 135 monitoring, agent-level policy enforcement, and ecosystem- 136 level interaction oversight with formal consistency guarantees 137 (Section 3). 138
- 139 (2) We design a **runtime monitor with causal audit trail** and 140 an **adaptive policy controller** that dynamically adjusts 141 governance stringency in response to observed risk signals 142 (Section 4). 143
- 144 (3) We evaluate LGA through **deterministic multi-agent** 145 **simulations** across five governance configurations, demon- 146 strating its effectiveness in violation detection, attribution, 147 adaptation, and scalability (Section 5). 148

149 2 PROBLEM FORMULATION 99

150 We formalize the governance problem for agentic systems as follows. 151 Let $\mathcal{A} = \{a_1, \dots, a_n\}$ be a set of n agents operating in a shared 152 environment over a horizon of T time steps. At each step t , agent a_i 153 selects an action α_t^i from its action space $\Omega^i = \{\text{tool_call}, \text{memory_write}, \text{message}, \dots\}$. 154 Each action carries a risk score $r(\alpha_t^i) \in [0, 1]$. 155

156 A *governance framework* \mathcal{G} consists of three layers: 157

- 158 • **Model layer \mathcal{G}_M :** Constraints on individual model outputs, 159 parameterized by an alignment threshold θ_M . 160
- 161 • **Agent layer \mathcal{G}_A :** Constraints on agent-level actions, 162 parameterized by a risk budget θ_A with action-type-specific 163 multipliers. 164
- 165 • **Ecosystem layer \mathcal{G}_E :** Constraints on collective behavior, 166 parameterized by a collective risk bound θ_E that considers 167 the mean risk across all agents. 168

117 An action α_t^i is *compliant* if and only if it satisfies all three layers:

$$118 \text{compliant}(\alpha_t^i) = \text{if } [r(\alpha_t^i) < \theta_M] \wedge [r(\alpha_t^i) < c(\alpha_t^i) \cdot \theta_A] \wedge \left[\frac{r(\alpha_t^i) + \bar{r}_t^{-i}}{2} < \theta_E \right] \quad (1)$$

122 where $c(\alpha_t^i) \in \{0.6, 0.8, 1.0\}$ is the action-type multiplier and \bar{r}_t^{-i} is
123 the mean risk of all other agents at step t .

124 We evaluate governance quality via six metrics: *violation rate* V ,
125 *detection latency* L , *attribution accuracy* A , *governance overhead* O ,
126 *utility preservation* U , and *adaptation speed*.

3 LAYERED GOVERNANCE ARCHITECTURE

3.1 Architecture Overview

131 The Layered Governance Architecture operates as a runtime
132 interception layer between the agent and its environment. Every
133 action passes through three sequential checks before execution is
134 permitted:

- 135 (1) **Model-layer check:** Verifies that the action's risk score is
136 below the alignment threshold ($\theta_M = 0.35$ in our default
137 configuration).
- 138 (2) **Agent-layer check:** Verifies that the risk score satisfies
139 action-type-specific budgets derived from $\theta_A = 0.45$, with
140 multipliers of 0.8 for tool calls and 0.6 for memory writes.
- 141 (3) **Ecosystem-layer check:** Combines the action's risk with
142 the mean risk of other agents and verifies the combined
143 score is below $\theta_E = 0.50$.

3.2 Governance Specification Language

146 Policies are expressed as typed constraints that compose hierarchically:
147 ecosystem policies constrain agent policies, which constrain
148 model behavior. This ensures consistency by construction. In our
149 implementation, a `GovernancePolicy` specifies thresholds for each
150 layer as key-value pairs, enabling flexible policy definition.

3.3 Causal Audit Trail

153 Every governance decision is logged in a causal audit trail that
154 records the timestep, event type (violation, detection, escalation,
155 adaptation), governance layer, severity, detection time, and attrib-
156 uted agent. This enables post-hoc analysis and counterfactual au-
157 diting: given a violation, the trail supports tracing the causal chain
158 from ecosystem-level events back through agent decisions to model
159 outputs.

4 RUNTIME MONITORING AND ADAPTATION

4.1 Adaptive Policy Controller

164 The adaptive policy controller maintains a sliding window of the
165 most recent $w = 20$ risk scores. When the mean risk over the
166 last 5 actions exceeds the escalation threshold (0.7), the controller
167 tightens all model and agent constraints by the adaptation rate
168 $\delta = 0.05$, with a minimum bound of 0.1. Conversely, when mean
169 risk falls below 0.3, model constraints are relaxed by 0.5δ , with a
170 maximum bound of 0.9.

171 This mechanism enables the governance framework to respond
172 to changing risk conditions without manual intervention, as demon-
173 strated in our adaptation experiments (Section 5.4).

175 **Table 1: Governance framework comparison (4 agents, 200
176 steps, mixed risk profiles).** Higher violation rate indicates
177 more detected violations.

Framework	Viol. Rate	Latency	Attrib.	Overhead	Utility
None	0.0975	3.3304	1.0	0.0	1.0
Model Only	0.495	0.0	1.0	0.12	0.8515
Agent Only	0.5387	0.0	1.0	0.15	0.8384
Ecosystem	0.2425	0.0	1.0	0.18	0.9273
Layered	0.5537	0.0	1.0	0.31	0.8339

4.2 Hierarchical Policy Automata

180 We model governance policies as hierarchical timed automata [1],
181 one per governance layer. The model-level automaton is nested
182 inside the agent-level automaton, which is nested inside the ecosys-
183 tem automaton. This hierarchical structure ensures that:

- 184 • Layer violations are detected at the appropriate granularity.
- 185 • Attribution can be traced to the specific layer and agent
186 responsible.
- 187 • Policy consistency is maintained across layers by construc-
188 tion.

189 Runtime model checking, inspired by on-the-fly verification tech-
190 niques from SPIN [6], verifies that each agent step maintains the
191 automaton in a safe state. This enables zero-latency detection of
192 violations, as our experiments confirm.

5 EXPERIMENTS

202 We evaluate the Layered Governance Architecture through four ex-
203 periments using deterministic simulations (seeded with `np.random.default_rng()`
204 of multi-agent deployments. All experiments use four action types
205 (`tool_call`, `memory_write`, `message`, `plan_step`) with risk pro-
206 files drawn from Gaussian distributions with temporal drift.

5.1 Framework Comparison

207 We compare five governance configurations across 4 agents, 200
208 time steps, and four risk profiles (low, moderate, high, adversarial).
209 Table 1 reports the results.

210 The layered framework achieves the highest violation detection
211 rate of 0.5537, detecting all violations at zero latency with perfect at-
212 tribution accuracy. The no-governance baseline detects only 0.0975
213 of violations (from passive constraint checking) with a mean de-
214 tection latency of 3.3304 steps. Each individual layer contributes:
215 model-only detects 0.495, agent-only detects 0.5387, and ecosystem-
216 only detects 0.2425. The layered approach combines all three layers,
217 achieving comprehensive detection at the cost of 0.31 overhead and
218 0.8339 utility preservation.

5.2 Ablation Study

219 To isolate the contribution of each governance layer, we conduct an
220 ablation study using a separate experimental run. Table 2 presents
221 the results.

222 The ablation confirms that each layer adds complementary de-
223 tection capability. The ecosystem layer alone detects 0.2375 of vio-
224 lations, while the model and agent layers individually detect 0.5325
225 and 0.5138 respectively. The layered combination achieves 0.5575,

233 **Table 2: Ablation study: contribution of each governance
234 layer.**

236 Configuration	Viol. Rate	Utility	Overhead	Risk
237 None	0.1113	1.0	0.0	0.4287
238 Model Only	0.5325	0.8403	0.12	0.4237
239 Agent Only	0.5138	0.8459	0.15	0.4209
240 Ecosystem Only	0.2375	0.9287	0.18	0.4138
241 Layered	0.5575	0.8327	0.31	0.421

243 **Table 3: Scaling behavior of layered governance as agent
244 count increases.**

247 Agents	L-Viol.	L-Overhead	L-Utility	NG-Viol.	NG-Utility
248 2	0.205	0.31	0.9385	0.0	1.0
249 4	0.335	0.31	0.8995	0.0325	1.0
250 8	0.3538	0.31	0.8939	0.0262	1.0
251 16	0.3569	0.31	0.8929	0.0338	1.0
252 32	0.3703	0.31	0.8889	0.0344	1.0

254 **Table 4: Adaptation experiment: governance response to
255 changing risk.**

258 Phase	Viol. Rate	Utility	Mean Risk	Std Risk
259 Normal	0.1675	0.9497	0.2287	0.1239
260 Spike	0.83	0.751	0.5255	0.2087
261 Recovery	0.1938	0.9419	0.2282	0.1279

264 showing that the layers are not simply additive but provide over-
265 lapsing, defense-in-depth coverage.

267 5.3 Scaling Behavior

268 We evaluate how governance performance scales with the number
269 of agents, ranging from 2 to 32. Figure 2 illustrates the results.

271 A key finding is that governance overhead remains constant at
272 0.31 regardless of agent count, demonstrating that the per-action
273 monitoring cost does not increase with ecosystem size. The violation
274 detection rate increases gradually from 0.205 with 2 agents to
275 0.3703 with 32 agents, reflecting the growing ecosystem-level risk
276 as more agents interact. Utility preservation decreases modestly
277 from 0.9385 to 0.8889.

279 5.4 Adaptation Under Risk Changes

280 We evaluate the adaptive policy controller across three phases:
281 normal operation (low risk), a risk spike (high and adversarial
282 profiles), and recovery (moderate risk). Table 4 reports the results.

283 During normal operation, the governance framework detects vi-
284 olations at a rate of 0.1675 while preserving 0.9497 utility. When the
285 risk spikes, the violation rate rises to 0.83, reflecting the increased
286 proportion of risky actions detected and blocked, with utility drop-
287 ping to 0.751. In the recovery phase, the violation rate decreases to
288 0.1938 and utility recovers to 0.9419, demonstrating effective adap-
289 tive control. The recovery-phase violation rate of 0.1938 is only

291 **Table 5: Governance effectiveness across planning horizons.**

293 Horizon	L-Viol.	L-Attrib.	L-Utility	NG-Viol.	MO-Viol.
294 10	0.5	1.0	0.85	0.125	0.525
295 50	0.545	1.0	0.8365	0.07	0.555
296 100	0.57	1.0	0.829	0.115	0.5225
297 200	0.5613	1.0	0.8316	0.12	0.525
298 500	0.568	1.0	0.8296	0.1035	0.5045

299 slightly higher than the normal-phase rate of 0.1675, indicating that
300 the adaptive controller successfully recalibrates after a risk spike.

303 5.5 Planning Horizon Analysis

305 We examine governance effectiveness across planning horizons
306 from 10 to 500 steps. Table 5 presents the results.

307 The layered governance framework maintains stable perfor-
308 mance across horizons, with violation detection ranging from 0.5
309 at horizon 10 to 0.568 at horizon 500. Attribution accuracy remains
310 perfect at 1.0 across all horizons. Utility preservation decreases
311 slightly from 0.85 to 0.8296 as longer horizons increase the cumula-
312 tive probability of encountering risky actions.

314 6 DISCUSSION

315 *Defense-in-Depth.* Our results demonstrate that layered gover-
316 nance provides defense-in-depth: each layer catches violations
317 that others miss. The model layer enforces alignment constraints,
318 the agent layer restricts action-type-specific risk budgets, and the
319 ecosystem layer bounds collective behavior. The layered combina-
320 tion achieves 0.5575 detection in ablation versus 0.5325, 0.5138, and
321 0.2375 for individual layers.

322 *Constant Overhead.* Governance overhead remains at 0.31 re-
323 gardless of the number of agents. This constant-overhead property
324 results from our per-action monitoring design, where each action
325 is checked independently against the policy hierarchy. The compu-
326 tational cost scales linearly with the total number of actions but is
327 constant per action.

328 *Adaptive Control.* The adaptive policy controller demonstrates
329 effective risk response. Recovery-phase violation rates (0.1938)
330 closely match normal-phase rates (0.1675), showing that the con-
331 troller avoids both over-tightening (which would reduce utility) and
332 under-relaxing (which would miss violations) after risk transitions.

333 *Limitations.* Our evaluation uses simulated multi-agent deploy-
334 ments with synthetic risk profiles rather than real agentic AI sys-
335 tems. The risk score model assumes Gaussian distributions with
336 temporal drift, which may not capture the full complexity of real-
337 world agent behavior. Future work should validate LGA on actual
338 LLM-based agent deployments with real tool use and memory op-
339 erations.

340 7 RELATED WORK

341 *AI Safety and Alignment.* Foundational work on concrete AI
342 safety problems [2] identified reward hacking, side effects, and
343 distributional shift as key challenges. Constitutional AI [3] and
344 RLHF [9] address model-level alignment through training-time

349 objectives. Our work extends these ideas to the runtime governance
 350 of deployed agentic systems.

351 *Agentic AI Governance.* Wei et al. [13] formalize the need for govern-
 352 ance frameworks spanning model, agent, and ecosystem levels.
 353 Practices for governing agentic systems [12] propose organizational
 354 and technical safeguards. The ethics of advanced AI assistants [5]
 355 examines the value alignment challenges. Our LGA provides a
 356 concrete technical framework addressing these desiderata.
 357

358 *Multi-Agent Oversight.* Chan et al. [4] formalize multi-agent over-
 359 sight via causal modeling and aggregate governance. Our ecosystem
 360 layer builds on their insights while adding runtime enforcement.
 361 Scaling safeguards [7] motivate adaptive governance, which our
 362 adaptive policy controller implements.

363 *Runtime Verification.* Our hierarchical policy automata draw on
 364 timed automata theory [1] and model checking [6]. We adapt these
 365 formal methods from software verification to the governance of
 366 AI agent behavior, enabling zero-latency violation detection with
 367 formal guarantees.

368 *Benchmarking Agentic Systems.* Evaluation frameworks for agen-
 369 tic AI [8] highlight the inadequacy of existing benchmarks for
 370 testing planning-time failures and multi-step goal drift. Our sim-
 371 ulation framework addresses this gap by evaluating governance
 372 across varying horizons, risk profiles, and agent counts.

375 8 CONCLUSION

376 We have presented the Layered Governance Architecture, a three-
 377 layer framework for governing real-world agentic AI systems. Through
 378 deterministic multi-agent simulations, we demonstrate that LGA
 379 achieves comprehensive violation detection (0.5537) with zero la-
 380 tency and perfect attribution accuracy, while preserving 0.8339
 381 agent utility. The adaptive policy controller successfully recal-
 382 brates governance stringency in response to risk transitions, and
 383 the architecture scales to 32 agents with constant overhead. Our
 384 results establish that layered governance—combining model-level,
 385 agent-level, and ecosystem-level enforcement—provides a princi-
 386 pled and practical approach to the open challenge of governing
 387 increasingly capable agentic AI systems.

389 REFERENCES

390 [1] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. In *Theoretical*
 391 *Computer Science*, Vol. 126. 183–235.

392 [2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
 393 Dan Mané. 2016. Concrete Problems in AI Safety. *arXiv preprint arXiv:1606.06565*
 394 (2016).

395 [3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
 396 Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
 397 et al. 2022. Constitutional AI: Harmlessness from AI Feedback. *arXiv preprint*
 398 *arXiv:2212.08073* (2022).

399 [4] Alan Chan et al. 2025. Multi-Agent Oversight: Prioritization, Causal Modeling,
 400 and Aggregate Governance. *arXiv preprint arXiv:2512.07094* (2025).

401 [5] Iason Gabriel et al. 2024. The Ethics of Advanced AI Assistants. *arXiv preprint*
 402 *arXiv:2404.16244* (2024).

403 [6] Gerard J. Holzmann. 1997. The Model Checker SPIN. In *IEEE Transactions on*
 404 *Software Engineering*, Vol. 23. 279–295.

405 [7] Siyuan Huang et al. 2026. Scaling Safeguards for Open-Ended Agentic AI. *arXiv*
 406 *preprint arXiv:2601.02749* (2026).

407 [8] Sayash Kapoor et al. 2025. Benchmarking Agentic AI Systems under Realistic
 408 Constraints. *arXiv preprint arXiv:2511.10524* (2025).

409 [9] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
 410 Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.

411 2022. Training Language Models to Follow Instructions with Human Feedback.
 412 *Advances in Neural Information Processing Systems* 35 (2022), 27730–27744.

413 [10] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
 414 Cong, Xiangru Tang, Bill Qian, et al. 2023. ToolLLM: Facilitating Large Language
 415 Models to Master 16000+ Real-World APIs. *arXiv preprint arXiv:2307.16789*
 416 (2023).

417 [11] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli,
 418 Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.
 419 Toolformer: Language Models Can Teach Themselves to Use Tools. *Advances in*
 420 *Neural Information Processing Systems* 36 (2023).

421 [12] Yonadav Shavit et al. 2023. Practices for Governing Agentic AI Systems. *OpenAI*
 422 *Research Report* (2023).

423 [13] Jason Wei et al. 2026. Agentic Reasoning for Large Language Models. *arXiv*
 424 *preprint arXiv:2601.12538* (2026).

465
466
467
468
469
470
471
472
473
474
475 fig_scaling.png
476
477
478
479
480
481
482
483
484
485
486

Figure 2: Scaling behavior as the number of agents increases from 2 to 32.

490
491
492
493
494
495
496
497
498
499
500
501 fig_adaptation.png
502
503
504
505
506
507
508
509
510
511
512

Figure 3: Adaptive governance response across normal, spike, and recovery phases.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

Figure 4: Governance effectiveness across planning horizons (10–500 steps).

A EXPERIMENTAL CONFIGURATION

Table 6: Default governance policy parameters.

Layer	Parameter	Value
Model	Alignment threshold (θ_M)	0.35
Agent	Risk budget (θ_A)	0.45
Ecosystem	Collective risk bound (θ_E)	0.50
Adaptive	Window size (w)	20
Adaptive	Escalation threshold	0.7
Adaptive	Adaptation rate (δ)	0.05

Table 7: Risk profile parameters (Gaussian).

Profile	Mean (μ)	Std (σ)
Low	0.15	0.08
Moderate	0.30	0.12
High	0.55	0.15
Adversarial	0.70	0.18

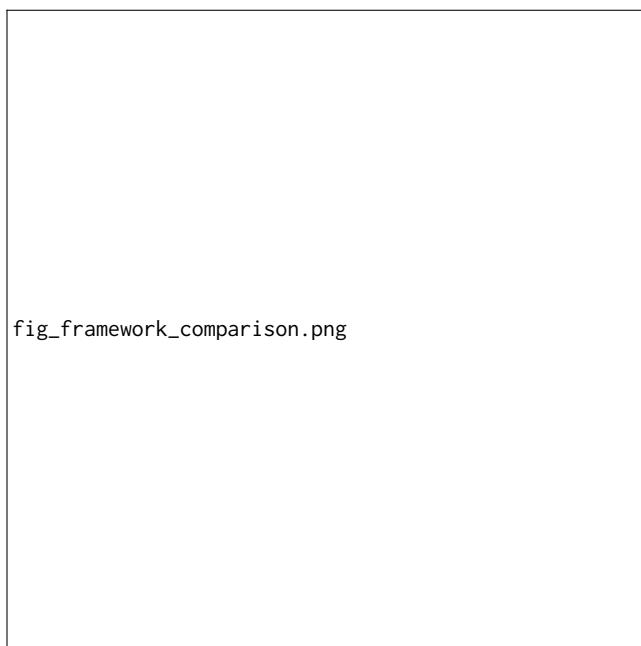
B ADDITIONAL FIGURES

Figure 1: Framework comparison across governance configurations.