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ABSTRACT
Large language models (LLMs) struggle to simultaneously integrate
physics-based numerical calculations and policy-based symbolic
rules when making autonomous driving decisions—a challenge
termed hybrid reasoning. We propose a decomposed architecture
that separates scenario parsing (handled by the LLM), deterministic
physics computation (using interval arithmetic for rigorous uncer-
tainty propagation), and policy rule evaluation (using a structured
constraint database with soft margins) into dedicated modules,
then fuses their outputs through a priority-weighted constraint
satisfaction algorithm. We evaluate on a synthetic benchmark of
600 driving scenarios spanning 5 weather conditions, 5 road types,
and 3 difficulty levels, classified into four reasoning modes: sim-
ple, physics-only, policy-only, and hybrid. Our framework achieves
88.3% overall decision accuracy compared to 57.5% for a mono-
lithic LLM, 62.3% for chain-of-thought prompting, and 73.2% for a
tool-augmented LLM. On the hardest hybrid-reasoning scenarios re-
quiring simultaneous physics and policy integration, our approach
reaches 86.2% accuracy—a 34.7 percentage-point improvement over
the monolithic baseline. Physics computation errors (braking dis-
tance MAE) drop from 12.2m for monolithic LLMs to 0.9m with our
deterministic engine. These results demonstrate that architectural
decomposition, rather than monolithic scaling, is a promising path
toward reliable hybrid reasoning for safety-critical autonomous
systems.

1 INTRODUCTION
Autonomous driving demands decisions that simultaneously re-
spect physical reality and regulatory policy. A vehicle approaching
a school zone on an icy road must compute its braking distance
under reduced friction (physics) while also enforcing the school-
zone speed limit and enhanced caution margins (policy). Neither
reasoning mode alone suffices: physics without policy may pro-
duce a maneuver that is physically feasible but legally prohibited,
while policy without physics may recommend an action that is
normatively correct but physically impossible given the vehicle’s
kinematic state.

Ferrag et al. [3] formalized this challenge through the Agent-
Drive benchmark, which includes a hybrid reasoning category re-
quiring the fusion of quantitative physics computations with policy
and margin-based reasoning. Their evaluation revealed that even
state-of-the-art LLMs exhibit substantial accuracy drops when both
reasoning modes must be composed into a single coherent deci-
sion under uncertainty. This finding motivates our central research
question: Can architectural decomposition—separating numerical
and symbolic reasoning into dedicated modules—overcome the hybrid
reasoning limitation of monolithic LLMs?

We propose a four-module pipeline: (1) an LLM-based Scenario
Parser that extracts structured entities from natural-language de-
scriptions; (2) a deterministic Physics Engine using interval arith-
metic [8] for rigorous uncertainty propagation; (3) a Policy Engine
with a rule database supporting soft constraints and gradedmargins;
and (4) a Constraint Fuser that combines physics intervals and
policy bounds through priority-weighted constraint satisfaction.
Each module operates in its area of strength, and the fusion layer
composes their outputs into an auditable decision with a calibrated
confidence estimate.

Our contributions are:
• A decomposed hybrid reasoning architecture that separates

numerical physics, symbolic policy, and constraint fusion
into independently verifiable modules.

• Interval arithmetic for uncertainty-aware physics computa-
tion that provides rigorous worst-case bounds on quantities
such as braking distance and time-to-collision.

• A soft-margin policy mechanism that translates vague nor-
mative language (e.g., “exercise extra caution”) into graded
constraint multipliers indexed by environmental condi-
tions.

• A comprehensive evaluation on 600 synthetic driving sce-
narios demonstrating a 34.7 percentage-point accuracy im-
provement overmonolithic LLMs on hybrid reasoning tasks.

1.1 Related Work
Neuro-symbolic integration. The tension between neural pat-
tern matching and symbolic rule following has a long history. Tool-
augmented LLMs [9] delegate numerical computation to external
tools, solving arithmetic accuracy but not addressing when to in-
voke which tool or how to fuse results. Program-aided language
models [1, 5] generate code encoding both physics and logic, but
are brittle when scenarios require soft policy reasoning that does
not reduce to clean conditional branches. Neuro-symbolic concept
learners [7, 15] achieve compositional generalization in visual QA
but have not been scaled to the open-ended language understanding
required for driving.

LLMs for autonomous driving.DriveGPT [13], LanguageMPC [10],
and related systems [4] use LLMs as high-level planners that output
waypoints or cost-function parameters. They rely on downstream
controllers for physical feasibility, sidestepping hybrid reasoning
rather than solving it. The AgentDrive benchmark [3] crystallizes
the problem by showing that top-tier models exhibit significant
accuracy drops when both reasoning modes are required simulta-
neously.

Structured reasoning with LLMs. Chain-of-thought prompt-
ing [12] improves multi-step reasoning but does not guarantee nu-
merical precision or systematic rule application. Self-consistency [11]
and tree-of-thought [14] improve robustness but add cost without
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Figure 1: Decomposed hybrid reasoning architecture. The
LLM handles scenario parsing (its strength); dedicated en-
gines handle physics and policy (their strength); a constraint
fuser combines both into an auditable decision. Arrows indi-
cate data flow; labels describe the intermediate representa-
tions passed between modules.

architectural guarantees. Faithful chain-of-thought [6] translates
natural language into formal logic, offering a path toward verifi-
able symbolic reasoning. Our work extends this direction by fully
decomposing physics and policy into dedicated verified engines.

Interval arithmetic for safety. Interval arithmetic [8] provides
rigorous enclosure of uncertain quantities without distributional
assumptions, making it suitable for safety-critical applications [2].
We apply interval methods to autonomous driving physics, propa-
gating sensor and environmental uncertainty through kinematic
equations to produce worst-case bounds on braking distances and
collision times.

2 METHODS
2.1 Problem Formulation
Adriving scenario is a tupleS = (𝑉 ,𝑊 , 𝑅, 𝜎)where𝑉 = {𝑣1, . . . , 𝑣𝑛}
is a set of vehicles with uncertain speeds and positions, 𝑊 ∈
{clear, rain, snow, fog, ice} is theweather condition,𝑅 ∈ {highway, urban, residential, school_zone, construction}
is the road type, and 𝜎 is a natural-language description. The
task is to select a maneuver 𝑚∗ ∈ M from a finite set M =

{maintain, brake, lane_change_L, lane_change_R, emergency_stop, accelerate, yield}
that satisfies all physics safety constraints and policy compliance
requirements.

2.2 Architecture Overview
Figure 1 illustrates the four-module pipeline. The decomposition
ensures that (1) numerical physics is computed deterministically
with interval arithmetic, not approximated by neural token predic-
tion; (2) policy rules are retrieved and applied systematically from a
structured database; and (3) constraint fusion is explicit, auditable,
and priority-weighted.

2.3 Module 1: Scenario Parser
The scenario parser extracts a structured representation S from
the natural-language description 𝜎 . It identifies vehicles (ego, lead,
adjacent), their speeds and positions (with uncertainty), weather
conditions, road type, and visibility. In our prototype, this is imple-
mented as a deterministic keyword-based extractor; in a production
system, it would be an LLM with constrained JSON-mode decoding.

Table 1: Friction coefficient intervals and visibility byweather
condition. These parameters directly affect physics compu-
tations and policy margin multipliers.

Weather 𝜇 interval Visibility (m) Margin

Clear [0.70, 0.80] 500 1.0×
Rain [0.40, 0.55] 200 1.5×
Snow [0.20, 0.35] 100 2.0×
Fog [0.65, 0.80] 60 1.8×
Ice [0.10, 0.25] 300 2.5×

Speeds are represented as intervals [𝑣, 𝑣] with ±5% uncertainty,
and distances as intervals with ±10% uncertainty, reflecting typical
sensor noise in autonomous driving.

2.4 Module 2a: Physics Engine
The physics engine computes safety-critical quantities using inter-
val arithmetic [8]. All inputs and outputs are closed intervals [𝑎, 𝑏]
with 𝑎 ≤ 𝑏, and standard arithmetic operations are extended to
intervals:

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] (1)
[𝑎, 𝑏] × [𝑐, 𝑑] = [min 𝑃, max 𝑃] (2)

where 𝑃 = {𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑}. Key computed quantities include:
Braking distance. Using the energy-balance formula:

𝑑brake =
𝑣2

2𝑔(𝜇 + 𝛾) (3)

where 𝑣 is speed, 𝑔 = 9.81m/s2, 𝜇 is the friction coefficient interval
(weather-dependent), and 𝛾 is road grade.

Total stopping distance. Includes reaction time 𝑡𝑟 ∈ [0.8, 1.5] s:
𝑑stop = 𝑣 · 𝑡𝑟 + 𝑑brake (4)

Time to collision (TTC). For an ego vehicle closing on a lead
vehicle:

TTC =
Δ𝑥

𝑣ego − 𝑣lead
(5)

computed as an interval over uncertain gaps and speeds.
Friction coefficients are indexed by weather condition (Table 1),

ranging from [0.7, 0.8] for clear conditions to [0.1, 0.25] for ice.

2.5 Module 2b: Policy Engine
The policy engine maintains a rule database indexed by scenario
features. Each rule produces a PolicyConstraint with four compo-
nents: a hard limit (absolute legal/physical boundary), a soft margin
factor (recommended additional buffer), a priority level (for conflict
resolution), and an applicability predicate.

The soft-margin mechanism addresses a key limitation of prior
work: vague policy language such as “exercise extra caution” is
translated into a combined margin factor :

𝑓margin = 𝑓weather (𝑊 ) × 𝑓road (𝑅) (6)

where 𝑓weather and 𝑓road are lookup tables (see Table 1 for weather
margins). For example, snow on a school-zone road yields 𝑓margin =

2.0 × 2.0 = 4.0, quadrupling the minimum following distance.
2
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Key policy constraints include: speed limits (absolute, priority 5),
minimum following distance (2-second rule scaled by 𝑓margin, pri-
ority 4), low-visibility restrictions (priority 5), school-zone special
rules (no lane changes, priority 6), and lane-change gap require-
ments (priority 4).

2.6 Module 3: Constraint Fusion
The constraint fuser evaluates each candidate maneuver𝑚 ∈ M
against all physics safety conditions and all policy constraints. A
maneuver is feasible if and only if it satisfies every hard constraint.
Among feasible maneuvers, the fuser selects the one with the high-
est confidence score, computed as:

𝑐 (𝑚) = 𝑐base + 𝑐margin (𝑚) + 𝑐TTC (𝑚) − 𝑐penalty (𝑚) (7)

where 𝑐base = 0.5, 𝑐margin rewards distance from hard-limit bound-
aries, 𝑐TTC rewards longer time-to-collision, and 𝑐penalty penalizes
aggressive maneuvers in adverse conditions.

If no maneuver is feasible, the system defaults to emergency
stop—the safest fallback. The full decision includes a human-readable
explanation tracing the physics analysis, policy constraints, and
fusion rationale.

2.7 Benchmark Design
We generate 600 synthetic scenarios parameterized across 5 weather
conditions × 5 road types × 3 difficulty levels × 8 replicates. Each
scenario includes ground-truth physics quantities and the correct
hybrid decision. Scenarios are classified into four reasoning modes:

• Simple: No lead vehicle, clear weather, standard road.
• Physics-only: Lead vehicle present, clear weather.
• Policy-only: No lead vehicle, adverse weather or special

road.
• Hybrid: Lead vehicle present and adverse conditions—

requiring simultaneous physics and policy reasoning.
We compare four approaches: (1)Monolithic LLM: direct prompt-

ing; (2) CoT LLM: chain-of-thought prompting [12]; (3) Tool-Aug.
LLM: LLM with physics calculator tool [9]; and (4) Hybrid (Ours):
the proposed decomposed architecture.

3 RESULTS
3.1 Overall Decision Accuracy
Table 2 presents decision accuracy broken down by reasoning mode.
Our hybrid framework achieves 88.3% overall accuracy, compared to
57.5% (Monolithic LLM), 62.3% (CoT), and 73.2% (Tool-Augmented).

The most notable finding is the performance pattern on hybrid-
mode scenarios (Figure 2). Monolithic LLMs achieve only 51.5%
on these scenarios—near chance for a 7-way classification—while
our framework reaches 86.2%. The tool-augmented LLM reaches
71.1% on hybrid scenarios but drops to 65.6% on policy-only sce-
narios, suggesting that tool augmentation helps physics but can
interfere with policy reasoning. Our approach avoids this trade-off
by keeping the two reasoning modes architecturally separate.

3.2 Difficulty Scaling
Figure 3 and Table 3 show how accuracy degrades with increasing
scenario difficulty. All methods degrade, but the gap between our

Table 2: Decision accuracy by reasoning mode. The hy-
brid category—requiring simultaneous physics and policy
reasoning—is the most challenging. Our decomposed frame-
work shows the largest advantage precisely on these scenar-
ios, while maintaining strong performance on single-mode
tasks.

Mode Mono. LLM CoT Tool-Aug. Hybrid (Ours)

Simple 0.750 0.833 1.000 1.000
Physics-only 0.700 0.767 0.917 0.967
Policy-only 0.859 0.797 0.656 0.938
Hybrid 0.515 0.575 0.711 0.862

Overall 0.575 0.623 0.732 0.883

Figure 2: Decision accuracy by reasoning mode. The mono-
lithic LLM and CoT baselines degrade sharply on hybrid
scenarios. The tool-augmented LLM improves on physics but
degrades on policy. Our decomposed framework maintains
high accuracy across all modes.

Table 3: Decision accuracy by difficulty level. The gap be-
tween our framework and baselines widens at higher diffi-
culty, demonstrating that decomposed reasoning provides
increasing advantage as constraints tighten.

Difficulty Mono. LLM CoT Tool-Aug. Hybrid (Ours)

Easy 0.710 0.755 0.850 0.940
Medium 0.590 0.620 0.740 0.910
Hard 0.425 0.495 0.605 0.800

framework and baselines widens at higher difficulty: from 23.0 pp
advantage over Monolithic LLM on easy scenarios to 37.5 pp on
hard scenarios. This indicates that decomposed reasoning is par-
ticularly valuable when scenarios involve tight constraint margins
and compounding uncertainty.

3.3 Physics Computation Accuracy
Table 4 reports mean absolute errors for braking distance and time-
to-collision estimation. Our deterministic physics engine with inter-
val arithmetic achieves 0.9m MAE for braking distance, compared

3
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Figure 3: Accuracy degradation with increasing difficulty.
All methods degrade, but the advantage of our decomposed
framework widens from 23.0 pp (easy) to 37.5 pp (hard) over
the monolithic LLM.

Table 4: Physics computation errors (mean ± std). Determin-
istic interval arithmetic in our framework reduces braking
distance error by 13× and TTC error by 10× compared to
monolithic LLMs.

Metric Mono. LLM CoT Tool-Aug. Hybrid (Ours)

Brake MAE (m) 12.2 ± 24.1 8.7 ± 16.0 2.6 ± 5.1 0.9 ± 1.5
TTC MAE (s) 10.4 ± 28.1 7.5 ± 18.7 2.8 ± 6.9 1.0 ± 2.6

Figure 4: Physics computation errors with standard deviation
bars. Left: braking distance MAE. Right: time-to-collision
MAE. Our deterministic engine achieves the lowest error and
variance. Note the high variance of LLM-based estimates,
which is unacceptable for safety-critical decisions.

to 12.2m for the monolithic LLM—a 13× reduction. For TTC, errors
drop from 10.39 s to 1.03 s. The tool-augmented LLM achieves 2.6m
braking distance MAE, confirming that external computation helps
but does not eliminate errors introduced during tool invocation
and result interpretation.

Figure 4 visualizes these errors. The high variance of monolithic
LLM physics estimates (std = 24.1m for braking distance) is partic-
ularly concerning for safety-critical applications where worst-case
performance matters more than average performance.

Figure 5: Accuracy heatmap across weather conditions and
road types. Left: Monolithic LLM shows pronounced degra-
dation under ice and snow, especially on school zones and
construction. Right: Our hybrid framework maintains more
uniform accuracy across all conditions.

Figure 6: Braking distance error by weather condition. The
monolithic LLM exhibits the largest errors under ice and
snow, precisely where accurate physics matters most. Our
framework maintains consistently low errors across all
weather conditions.

3.4 Weather and Road Type Analysis
Figure 5 shows a heatmap of decision accuracy across weather
conditions and road types. The monolithic LLM shows pronounced
degradation under ice (𝜇 ∈ [0.1, 0.25]) and snow (𝜇 ∈ [0.2, 0.35]),
where physics computation is most challenging due to the wide fric-
tion uncertainty intervals. Our framework maintains more uniform
accuracy because the physics engine handles uncertainty propa-
gation deterministically, and the policy engine applies weather-
appropriate margins automatically.

Figure 6 disaggregates physics errors by weather condition, re-
vealing that the monolithic LLM’s braking distance errors are most
severe under ice conditions (where friction intervals are widest).
Our framework’s errors remain consistently low across all condi-
tions because the physics engine applies interval arithmetic regard-
less of parameter ranges.

3.5 Failure Mode Analysis
We analyze the remaining errors of our framework (11.7% over-
all error rate). The most common failure modes are: (1) Parsing
ambiguity (38% of errors): the scenario parser extracts incorrect
speed or distance estimates from ambiguous descriptions. (2) Tight

4
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margins (31%): the scenario has constraints so tight that small
uncertainties in the interval bounds flip the feasibility of the cor-
rect maneuver. (3)Missing policy rules (21%): the policy database
lacks a rule needed for the specific scenario combination. (4) Con-
fidence calibration (10%): the correct maneuver is feasible but
ranks below another due to confidence scoring.

These failure modes suggest clear improvement paths: better
LLM-based parsing with structured output validation, expanded
policy databases, and learned confidence calibration from scenario
data.

4 CONCLUSION
Wehave presented a decomposed hybrid reasoning architecture that
addresses the open problem identified by Ferrag et al. [3]: current
LLMs cannot reliably fuse physics-based numerical reasoning with
policy-based symbolic reasoning for autonomous driving. Our key
insight is that this fusion should be architecturally decomposed
rather than left as an implicit capability of a monolithic model.

The architecture separates scenario parsing (LLM), physics com-
putation (interval arithmetic engine), policy evaluation (structured
rule database with soft margins), and constraint fusion (priority-
weighted satisfaction) into dedicated modules, each operating in
its area of strength. Evaluation on 600 synthetic scenarios demon-
strates a 34.7 percentage-point improvement over monolithic LLMs
on hybrid-reasoning tasks, with physics computation errors re-
duced by 13×.

Our framework has three limitations that suggest future work.
First, the scenario parser relies on keyword matching; replacing it
with an LLM with constrained decoding would improve robustness
to diverse language. Second, the policy database requires manual
construction; learning policy constraints from driving regulations
and expert demonstrations could scale coverage. Third, our evalu-
ation uses synthetic scenarios; validation on the full AgentDrive
benchmark [3] and real-world driving data is needed to confirm
generalization.

More broadly, our results suggest that the path to reliable hybrid
reasoning in safety-critical domains lies not in larger monolithic
models but in architectures that decompose reasoning into spe-
cialized modules with verified interfaces. This principle—delegate
to the specialist, compose at the boundary—may apply beyond
autonomous driving to any domain requiring the fusion of quanti-
tative computation with qualitative rules under uncertainty.
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