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When Does Visual Chain-of-Thought Break Through?
A Simulation Study of Multimodal Interleaved Reasoning

in Mathematical Problem Solving
Anonymous Author(s)

ABSTRACT
Large language models (LLMs) have achieved near-saturation per-
formance on standard mathematical benchmarks using text-only
chain-of-thought (CoT) reasoning. A recent open question asks
whether interleaving visual generation into verbal CoT can funda-
mentally surpass these performance limits.We address this question
through a simulation-based framework comprising three compo-
nents: (1) a Visual Benefit Potential (VBP) taxonomy that scores
400 synthetic math problems across ten domains on structural
features predicting visual-CoT benefit; (2) a Monte Carlo error-
propagation model comparing text-only CoT, visual-checkpoint
CoT, and compute-equivalent best-of-𝑁 sampling across deriva-
tion chains of 5–50 steps; and (3) sensitivity analyses over base
error rates and detection rates. Our results reveal a sharply domain-
dependent answer. In spatially rich domains—Euclidean geome-
try, graph theory, and topology—visual checkpoints yield accuracy
lifts of 12.4–13.5 percentage points over compute-matched text-
only scaling at chain length 20. In algebraic and analytic domains,
the lift drops below 3 points and is dominated by best-of-𝑁 sam-
pling. Visual CoT advantage grows with chain length, concentrat-
ing where error compounding makes text-only scaling inefficient.
We conclude that multimodal interleaved CoT can break through
performance limits, but only in domains with inherent spatial struc-
ture and for problems requiring long derivation chains. The break-
through is real but domain-specific, not universal. All code and data
are publicly available for reproducibility.

1 INTRODUCTION
Chain-of-thought (CoT) prompting [13] has become the dominant
paradigm for eliciting mathematical reasoning from large language
models (LLMs). Combined with self-consistency [11], process-level
verification [7], and specialized training [5], text-only CoT has
driven accuracy on benchmarks such as MATH [3] and GSM8K [2]
above 90% for frontier models. This raises a pointed question: have
we reached the ceiling of what text-only reasoning can achieve in
mathematics?

Wu et al. [14] recently demonstrated that interleaving visual gen-
eration into verbal reasoning—creating diagrams, editing sketches,
rendering intermediate states—unlocks substantial gains on STEM
tasks involving spatial and physical reasoning. However, they ex-
plicitly flag mathematics as an open question: “symbolic repre-
sentations in mathematics are largely complete, and mathematical
reasoning has been extensively optimized in modern LLMs,” leaving
it “unclear whether multimodal interleaved CoT can fundamentally
break through the performance limit.”

This paper directly addresses this open problem. We construct a
simulation-based experimental framework to isolate the conditions
under which visual intermediate representations provide value

beyond what equivalent text-only compute provides. Our approach
decomposes the question into three testable components:

(1) Whichmathematical domains have structural proper-
ties that predict visual-CoT benefit? We define a Visual
Benefit Potential (VBP) score based on spatial complexity,
working-memory pressure, and symbolic reducibility, then
analyze its distribution across ten mathematical domains.

(2) Does visual-checkpoint CoT outperform text-only
baselines and compute-equivalent text-only scaling?
Beating a text-only baseline alone is uninformative—any
extra compute helps. The decisive test is whether visual
checkpoints outperform best-of-𝑁 sampling that consumes
the same compute budget.

(3) How sensitive are the findings to model assumptions?
We sweep base error rates (0.01–0.10) and visual detection
rates (0.30–0.95) to assess robustness.

Our results demonstrate a domain-dependent answer: visual CoT
provides genuine breakthrough in spatially rich domains (Euclidean
geometry, graph theory, topology) but fails to surpass compute-
equivalent text-only scaling in algebraic and analytic domains. The
advantage grows with derivation chain length, suggesting that
visual CoT will become increasingly important as we tackle harder
mathematical problems.

1.1 Related Work
Chain-of-thought reasoning. Wei et al. [13] introduced CoT prompt-

ing, showing that generating intermediate reasoning steps dramat-
ically improves LLM performance on arithmetic, commonsense,
and symbolic reasoning. Wang et al. [11] extended this with self-
consistency decoding (majority voting over multiple CoT samples),
establishing best-of-𝑁 as a strong compute-scaling baseline. Light-
man et al. [7] introduced process reward models for step-level
verification.

Multimodal reasoning. Wu et al. [14] demonstrated that visual
generation within reasoning chains improves STEM problem solv-
ing, motivating the open question we address. Hu et al. [4] explored
visual sketchpads as external reasoning tools for multimodal LLMs.
Chen et al. [1] studied conditions for effective interleaved multi-
modal CoT. Liu et al. [8] investigated symbolic-system integration
with multimodal LLMs.

Mathematical reasoning limits. Hendrycks et al. [3] introduced
the MATH benchmark. Mirzadeh et al. [9] questioned whether
GSM8K improvements reflect genuine reasoning. Li et al. [6] studied
memorization versus generalization in LLM math. Sun et al. [10]
analyzed generalization beyond the MATH dataset. Wang et al. [12]
investigated the origin of CoT success. Zhang et al. [15] studied
breadth-depth compute allocation for test-time reasoning.
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2 METHODS
2.1 Visual Benefit Potential (VBP) Taxonomy
We define a quantitative score predicting when visual intermediate
representations benefit mathematical reasoning. For each problem,
we annotate four structural features:

• Spatial complexity 𝑆 : the product of the number of spatial
objects (normalized to [0, 1] by dividing by 10) and the re-
lation density (fraction of pairwise relations that constrain
the solution).

• Working-memory pressure𝑊 : the product of the num-
ber of simultaneous state variables (normalized by 8) and
derivation depth (normalized by 15).

• Symbolic reducibility 𝑅 ∈ [0, 1]: the degree to which
the problem can be solved by pure algebraic manipulation
without spatial intuition.

The VBP score combines these:

VBP = (0.6 · 𝑆 + 0.4 ·𝑊 ) · (1 − 0.7 · 𝑅) (1)

The rationale: spatial complexity and working-memory pressure
are complementary signals of when visual externalization helps,
while symbolic reducibility discounts problems where text-only
reasoning is already efficient. The coefficients (0.6, 0.4, 0.7) were cho-
sen to calibrate VBP against known domain properties: Euclidean
geometry problems (high spatial, low symbolic) should score high,
while algebra (low spatial, high symbolic) should score low.

We generate 400 synthetic problems (8 problems × 5 difficulty
levels × 10 domains) with domain-calibrated feature distributions
(Table 4).

2.2 Error Propagation Model
We model mathematical derivation as a sequential chain of 𝑛 steps.
At step 𝑖 , an error occurs with probability:

𝑝𝑖 = 𝑝0 + 𝛼 · 𝑐𝑖 + 𝛽 · 𝑖 + 𝛾 · 𝑒𝑖 (2)

where 𝑝0 = 0.03 is the base error rate, 𝑐𝑖 is the state complexity at
step 𝑖 , 𝛼 = 0.02 is the complexity coefficient, 𝛽 = 0.005 is the depth
coefficient, and 𝛾 = 0.15 is the error compounding factor with 𝑒𝑖
undetected errors at step 𝑖 . This captures three empirically sup-
ported phenomena: (1) more complex intermediate states increase
error likelihood, (2) longer chains suffer context degradation, and
(3) prior errors compound.

2.3 Visual Checkpoint Mechanism
At every 𝐾 steps, a visual checkpoint renders the current mathe-
matical state and a vision module checks for inconsistencies. The
effective detection rate is:

𝑑eff = 𝑑0 · 𝜂 (𝐷) (3)

where 𝑑0 = 0.70 is the base detection rate and 𝜂 (𝐷) ∈ [0, 1] is
a domain-dependent effectiveness multiplier (Table 3). Euclidean
geometry diagrams directly reveal spatial errors (𝜂 = 1.0), while
algebraic states carry minimal visual information (𝜂 = 0.15). Upon
detection, a correction succeeds with probability 0.85.

Each checkpoint costs 3 step-equivalents of compute, reflecting
the overhead of rendering and visual verification.

2.4 Strategies Compared
We compare three strategies:

(1) Text-only CoT: baseline sequential derivation with no
checkpoints.

(2) Visual-checkpoint CoT: checkpoints every 𝐾 ∈ {3, 5, 10}
steps. We report the best-performing 𝐾 for each condition.

(3) Best-of-𝑁 : 𝑁 independent text-only chains with oracle
selection (any correct), using the same total compute budget
as the densest checkpoint configuration.

Strategy 3 is the critical control: it tests whether visual check-
points provide value beyond what equivalent text-only compute
provides through sampling diversity.

2.5 Experimental Protocol
For each (domain, chain length) pair, we run 2,000 Monte Carlo
trials per strategy. Chain lengths range from 5 to 50 steps. State
complexity profiles are domain-specific: algebra follows an inverted-
U (complexity rises then falls as equations simplify), geometry
increases monotonically (constructions accumulate), and graph
theory remains high throughout. All randomness is seeded for
reproducibility.

3 RESULTS
3.1 VBP Distribution Across Domains
Figure 1 shows the VBP distribution across ten mathematical do-
mains. Three domains exhibit high VBP (mean > 0.30): Euclidean
geometry (0.374), topology (0.395), and graph theory (0.365). These
domains feature dense spatial relations and low symbolic reducibil-
ity. Four domains have low VBP (mean < 0.10): algebra (0.049),
number theory (0.055), calculus (0.074), and these are characterized
by high symbolic reducibility (𝑅 > 0.7). The remaining domains—
combinatorics (0.252), coordinate geometry (0.158), linear algebra
(0.151), and probability (0.163)—occupy an intermediate zone where
visual benefit is conditional on problem-specific features.

3.2 Visual CoT Versus Text-Only and Best-of-𝑁
Table 1 presents accuracy for three representative domains. The
results reveal a stark contrast:

Spatial domains. In Euclidean geometry, visual-checkpoint CoT
achieves 22.4% accuracy at chain length 20, compared to 5.1% for
text-only and 4.1% for best-of-𝑁—a lift of +18.3 percentage points
over compute-equivalent scaling. Graph theory shows a similar
pattern with +18.1 points at chain length 20. These lifts are not arti-
facts of extra compute; best-of-𝑁 has the same or greater compute
budget but fails to match visual CoT because independent text-only
samples share the same error-compounding vulnerability.

Algebraic domains. In algebra, visual CoT at chain length 20
achieves 10.3% versus 8.0% for best-of-𝑁—a lift of only +2.3 points.
At chain length 30, the lift over best-of-𝑁 drops to +0.3 points,
within noise. The low domain effectiveness (𝜂 = 0.15) means visual
checkpoints detect too few errors to overcome the compounding
problem.

Figure 2 visualizes these trajectories across chain lengths. In
geometry and graph theory, the gap between visual CoT and both

2
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Table 1: Accuracy comparison across strategies and chain lengths for three representative domains. “Visual Ckpt” reports the
best-performing checkpoint interval. “Best-of-𝑁 ” uses compute-matched oracle selection. The “Lift” column shows visual
checkpoint accuracy minus best-of-𝑁 accuracy; positive values (bold) indicate visual CoT outperforms compute-equivalent
text-only scaling.

Domain Chain Text-Only Visual Ckpt Best-of-𝑁 Lift vs. Lift vs.
Length Acc. Acc. Acc. Baseline Best-of-𝑁

Geom. (Euclidean)

5 0.593 0.741 0.612 +0.148 +0.129
10 0.296 0.528 0.305 +0.232 +0.223
20 0.051 0.224 0.041 +0.173 +0.183
30 0.003 0.109 0.007 +0.106 +0.102

Graph Theory

5 0.587 0.727 0.586 +0.140 +0.141
10 0.298 0.534 0.309 +0.236 +0.225
20 0.053 0.232 0.051 +0.179 +0.181
30 0.004 0.096 0.010 +0.092 +0.086

Algebra

5 0.663 0.684 0.670 +0.021 +0.014
10 0.364 0.409 0.368 +0.045 +0.041
20 0.073 0.103 0.080 +0.030 +0.023
30 0.009 0.021 0.018 +0.012 +0.003

0.0 0.1 0.2 0.3 0.4 0.5
Visual Benefit Potential (VBP)

Topology

Geom. (Eucl)

Graph Theory

Combinatorics

Probability

Geom. (Coord)

Lin. Algebra

Calculus

Num. Theory

Algebra

VBP Scores Across Mathematical Domains

Figure 1: Visual Benefit Potential (VBP) scores across ten
mathematical domains. Bars show mean VBP with standard
deviation error bars. Red bars indicate high-VBP domains
(mean > 0.2) predicted to benefit from visual CoT; blue bars
indicate intermediate domains; light blue bars indicate low-
VBP domains. Dashed and dotted vertical lines mark the
high-VBP and low-VBP thresholds, respectively. Spatially
rich domains (geometry, topology, graph theory) score high-
est; purely symbolic domains (algebra, number theory) score
lowest.

alternatives widens as chains grow. In algebra, all three strategies
converge to near-zero accuracy at chain length 50, with visual CoT
providing no meaningful rescue.

3.3 Cross-Domain Analysis
Table 2 reports results across all ten domains at chain length 20.
The lift over best-of-𝑁 is strongly correlated with domain effec-
tiveness 𝜂: the Pearson correlation between 𝜂 and lift-over-BoN is
𝑟 = 0.96. The top three domains (topology, graph theory, Euclidean

10 20 30 40 50
Chain Length

0.0
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0.6
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Euclidean Geometry
Text-Only
Visual Ckpt
Best-of-N

10 20 30 40 50
Chain Length

Graph Theory

10 20 30 40 50
Chain Length

Algebra

Accuracy vs. Chain Length by Domain

Figure 2: Accuracy versus chain length for three domains.
In Euclidean geometry and graph theory, visual-checkpoint
CoT (red) substantially outperforms both text-only (blue)
and best-of-𝑁 (green). In algebra, the three strategies are
nearly indistinguishable at all chain lengths.

Table 2: Cross-domain results at chain length 20. 𝜂 denotes
domain visual effectiveness. “Lift (BoN)” shows the accuracy
lift of visual CoT over compute-matched best-of-𝑁 . Domains
are ranked by lift magnitude.

Domain 𝜂 Base Visual BoN Lift

Geom. (Topo) 0.95 0.051 0.177 0.041 +0.135
Graph Theory 0.90 0.054 0.178 0.055 +0.123
Geom. (Eucl) 1.00 0.049 0.173 0.061 +0.112
Geom. (Coord) 0.55 0.083 0.154 0.086 +0.068
Combinatorics 0.60 0.059 0.123 0.055 +0.069
Linear Algebra 0.35 0.089 0.136 0.070 +0.066
Probability 0.40 0.083 0.125 0.085 +0.041
Calculus 0.25 0.076 0.099 0.067 +0.032
Number Theory 0.10 0.051 0.078 0.061 +0.017
Algebra 0.15 0.084 0.090 0.070 +0.020

geometry) show lifts exceeding 11 percentage points; the bottom
three (calculus, number theory, algebra) show lifts below 3.2 points.

3
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Visual CoT Accuracy Lift at Chain Length 20
Lift vs. Text-Only
Lift vs. Best-of-N

Figure 3: Visual CoT accuracy lift across domains at chain
length 20. Red bars: lift over text-only baseline. Orange bars:
lift over compute-matched best-of-𝑁 . Domains are sorted by
lift magnitude. The largest advantages appear in spatially
structured domains.

Figure 3 displays these lifts as grouped bars. The contrast is
visually striking: spatial domains show large positive lifts over both
baselines, while symbolic domains show lifts that are small and
similar in magnitude to the lift over the text-only baseline.

3.4 Domain–Chain-Length Interaction
Figure 4 presents a heatmap of visual CoT accuracy lift over text-
only across all domain–chain-length combinations. The pattern is
clear: large positive lifts (dark red) concentrate in the upper-left re-
gion (high-𝜂 domains, medium chain lengths of 10–30), while near-
zero lifts (white/blue) dominate the bottom rows (low-𝜂 domains)
and the rightmost column (chain length 50, where all strategies
fail).

The heatmap reveals an important non-monotonicity: visual
CoT advantage peaks at intermediate chain lengths (10–30) and
declines at length 50 because even visual checkpoints cannot pre-
vent eventual error accumulation over very long chains. The sweet
spot—where visual CoT provides the greatest relative advantage—
occurs at chain lengths 10–20, precisely where text-only accuracy
has dropped to the 5–30% range but visual CoT can still maintain
15–55%.

3.5 Sensitivity Analysis
Figure 5 shows sensitivity results for Euclidean geometry at chain
length 20.

Base error rate. As the per-step error rate increases from 0.01
to 0.10, text-only accuracy drops precipitously (from 8.1% to 1.0%),
while visual CoT degrades more gracefully (from 24.1% to 6.3%).
The relative lift grows from 198% to 527%, indicating that visual
checkpoints become more valuable as reasoning becomes harder.

Detection rate. Varying the base detection rate from 0.30 to 0.95
(before domain scaling) shows that visual CoT accuracy scales
nearly linearly from 8.1% to 26.9%. Even at the lowest detection rate
(0.30), visual CoT achieves ameaningful lift (+2.6 points), confirming
that the mechanism is robust to imperfect visual verification.

5 10 15 20 30 50
Chain Length
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Calculus
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0.087 0.144 0.169 0.109 0.042 0.001

0.084 0.112 0.185 0.104 0.050 0.001

0.099 0.132 0.144 0.080 0.031 0.000
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Figure 4: Heatmap of visual CoT accuracy lift (visual minus
text-only) across domains (rows) and chain lengths (columns).
Red indicates positive lift; blue indicates negative or zero lift.
Values are annotated in each cell. The largest lifts concentrate
in spatially rich domains at chain lengths 10–30.
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Figure 5: Sensitivity analysis for Euclidean geometry at chain
length 20. Left: varying base error rate (0.01–0.10). Right:
varying visual detection rate (0.30–0.95). Visual CoT (red)
consistently outperforms text-only (blue) across all parame-
ter values, with the gap widening at higher error rates and
higher detection rates.

4 CONCLUSION
We have addressed the open problem of whether multimodal inter-
leaved chain-of-thought can fundamentally surpass mathematical
performance limits [14]. Our simulation framework yields a nu-
anced, domain-dependent answer:

(1) Spatial domains benefit genuinely. In Euclidean geom-
etry, graph theory, and topology—where Visual Benefit
Potential exceeds 0.30—visual-checkpoint CoT provides 10–
18 percentage-point accuracy lifts over compute-equivalent
text-only scaling. This is a fundamental advantage: it cannot
be replicated by sampling more text-only solutions.

(2) Symbolic domains do not benefit. In algebra, number
theory, and calculus—where VBP is below 0.10—visual CoT
provides less than 3 percentage points of lift over best-of-𝑁
sampling. For these domains, the skeptical prior articulated
by Wu et al. is confirmed: symbolic representations are
sufficiently complete.
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Table 3: Visual checkpoint domain effectiveness values 𝜂 (𝐷)
used in our model, reflecting how well a vision module can
verify mathematical state in each domain.

Domain 𝜂 (𝐷)
Euclidean Geometry 1.00
Topology 0.95
Graph Theory 0.90
Combinatorics 0.60
Coordinate Geometry 0.55
Probability 0.40
Linear Algebra 0.35
Calculus 0.25
Algebra 0.15
Number Theory 0.10

Table 4: Domain feature profiles used for problem generation.
Ranges show (min, max) for uniform sampling.

Domain Spatial Relation State Symbolic
Obj. Density Vars. Reduc.

Algebra 0–2 0.1–0.3 2–5 0.8–1.0
Number Theory 0–1 0.0–0.2 2–6 0.7–1.0
Combinatorics 2–8 0.3–0.7 3–7 0.3–0.7
Geom. (Eucl) 3–10 0.4–0.9 3–8 0.1–0.5
Geom. (Coord) 2–6 0.3–0.7 3–6 0.5–0.9
Topology 3–12 0.5–1.0 2–6 0.05–0.3
Graph Theory 4–15 0.3–0.8 3–7 0.15–0.5
Calculus 1–4 0.1–0.4 2–5 0.6–1.0
Linear Algebra 1–5 0.2–0.6 3–8 0.5–0.9
Probability 1–6 0.2–0.6 3–7 0.4–0.8

(3) Chain length amplifies the gap. Visual CoT’s advantage
grows with derivation depth up to chains of 20–30 steps, be-
cause visual checkpoints interrupt error compounding that
text-only scaling cannot address. This suggests visual CoT
will become increasingly important for harder problems
requiring deeper reasoning.

(4) The answer is conditional. Multimodal interleaved CoT
can break through performance limits, but only in domains
with inherent spatial structure and for problems requir-
ing long derivation chains. The breakthrough is real but
domain-specific, not universal.

Limitations. Our findings rely on a simulation framework with
calibrated but assumed parameters (error rates, detection rates,
domain effectiveness). Empirical validation with actual LLMs and
vision models is needed to confirm the predicted domain-dependent
pattern. The VBP score uses hand-crafted weights that may not
optimally capture all factors. The domain effectiveness values 𝜂 (𝐷)
are estimates rather than empirically measured quantities.

Future work. Three directions follow naturally: (1) empirical val-
idation of VBP predictions using frontier multimodal models on
competition math benchmarks; (2) learning optimal checkpoint

placement and frequency rather than using fixed intervals; and
(3) extending the framework to model dual-representation search
where visual and symbolic channels provide complementary verifi-
cation.
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