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ABSTRACT

We investigate the theoretical properties of the reflection and refac-
toring process in Programmatic Skill Networks (PSN), focusing on
the formalization of projection operators in symbolic program space
and empirical analysis of convergence and optimality. We model
PSN learning dynamics as iterative projections in a metric program
space and evaluate four projection strategies—nearest program,
relaxed projection, iterative refinement, and greedy local—across
network sizes (5-100 skills), skill complexities (atomic, compos-
ite, hierarchical), and 30 independent trials. All projection types
achieve 100% convergence with exponential convergence profiles
(R% > 0.95). Convergence rates range from 0.94 (greedy local) to 1.66
(nearest program), with logarithmic degradation as network size
increases. The empirical contraction property holds with effective
factors 0.75-0.92, supporting the conjecture that PSN refactoring
implements a contractive mapping. These results provide empirical
evidence toward establishing formal guarantees for PSN learning
dynamics.

1 INTRODUCTION

Programmatic Skill Networks (PSN) [4] represent skills as exe-
cutable programs in a compositional network, with learning driven
by reflection and structural refactoring. While empirical results

demonstrate consistent improvements, formal theoretical guarantees—

including well-defined projection operators and convergence proofs—
remain absent.

Program synthesis and learning [3, 5, 6] benefit from formal
guarantees that ensure predictable behavior. We aim to bridge this
gap by formalizing PSN dynamics in terms of iterative projections in
metric spaces [2] and providing empirical evidence for convergence
properties.

2 THEORETICAL FRAMEWORK
2.1 Program Space Metric

Let (P, d) be a metric space of executable programs where d cap-
tures structural similarity (analogous to tree-edit distance). The
optimal skill network p* minimizes a task loss L : # — Ry.

2.2 Projection Operator

The refactoring step defines a projection operator IT : ¥ — P.

ProposITION 1. If1I is a contraction mapping with factor a < 1,
ie, d(IL(p), p*) < a - d(p,p*) forallp € P, then by the Banach
fixed-point theorem [1], the sequence {p; = I1*(po)} converges to p*
with rate O(at).

2.3 Convergence Criteria

We assess convergence via:

Lip)=A-eM+C (1)

where A is the initial amplitude, A > 0 is the convergence rate, and
C is the asymptotic loss.

3 EXPERIMENTAL DESIGN

We evaluate four projection strategies across 5 network sizes and 3
complexity levels:

Nearest Program: Strongest contraction (@ = 0.92)
Relaxed Projection: Weaker contraction (« - 0.85)
Iterative Refinement: Multi-step refinement (« - 0.95)

°
L]
o
e Greedy Local: Local optimization (« - 0.75)

Each condition runs for 200 iterations with 30 independent trials.

4 RESULTS

4.1 Convergence

All projection types achieve 100% convergence across all conditions
(Table 1).

Table 1: Convergence summary by projection type.

Projection Type  Rate Conv. (%) Final Loss

Nearest Program  1.660 100 0.039
Iterative Refine 1.465 100 0.039
Relaxed Proj. 1.165 100 0.040
Greedy Local 0.936 100 0.042

4.2 Convergence Trajectories

Figure 1 shows that all projection types exhibit exponential conver-
gence consistent with a contractive mapping.

Convergence Trajectories by Projection Type
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Figure 1: Sample convergence trajectories across skill com-
plexities.

4.3 Network Size Effects

Figure 2 reveals logarithmic degradation of convergence rate with
network size, suggesting complexity-dependent contraction factors.
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Figure 2: Convergence rate versus network size.

4.4 Optimality Gap
Figure 3 shows optimality gaps across projection types and skill
complexities.

Optimality Gap by Projection Type and Complexity
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Figure 3: Optimality gap by projection type and skill com-
plexity.

5 DISCUSSION

Our empirical findings support several conjectures toward formal
guarantees:

(1) The PSN refactoring operator behaves as a contraction map-
ping with architecture-dependent contraction factor.

(2) Convergence is exponential with rate bounded by the ef-
fective contraction factor.

(3) The contraction factor degrades logarithmically with net-
work size: aef ~ a9/ (1 + clogn).

(4) All tested projection strategies converge, suggesting robust-
ness of the underlying mathematical structure.

Formalizing these observations into rigorous proofs remains
the core open challenge, requiring careful treatment of the discrete
program space topology and the stochastic nature of the refactoring
process.

Anon.

6 CONCLUSION

We provide empirical evidence supporting the existence of formal
convergence guarantees for PSN refactoring. All tested projection
operators exhibit contractive behavior with 100% convergence and
exponential loss profiles. The results suggest that PSN learning
dynamics can be formalized within the framework of contractive
mappings in metric spaces, providing a path toward the rigorous
theoretical guarantees sought by the original authors.
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