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ABSTRACT
We investigate the theoretical properties of the reflection and refac-

toring process in Programmatic Skill Networks (PSN), focusing on

the formalization of projection operators in symbolic program space

and empirical analysis of convergence and optimality. We model

PSN learning dynamics as iterative projections in a metric program

space and evaluate four projection strategies—nearest program,

relaxed projection, iterative refinement, and greedy local—across

network sizes (5–100 skills), skill complexities (atomic, compos-

ite, hierarchical), and 30 independent trials. All projection types

achieve 100% convergence with exponential convergence profiles

(𝑅2 > 0.95). Convergence rates range from 0.94 (greedy local) to 1.66

(nearest program), with logarithmic degradation as network size

increases. The empirical contraction property holds with effective

factors 0.75–0.92, supporting the conjecture that PSN refactoring

implements a contractive mapping. These results provide empirical

evidence toward establishing formal guarantees for PSN learning

dynamics.

1 INTRODUCTION
Programmatic Skill Networks (PSN) [4] represent skills as exe-

cutable programs in a compositional network, with learning driven

by reflection and structural refactoring. While empirical results

demonstrate consistent improvements, formal theoretical guarantees—

includingwell-defined projection operators and convergence proofs—

remain absent.

Program synthesis and learning [3, 5, 6] benefit from formal

guarantees that ensure predictable behavior. We aim to bridge this

gap by formalizing PSN dynamics in terms of iterative projections in

metric spaces [2] and providing empirical evidence for convergence

properties.

2 THEORETICAL FRAMEWORK
2.1 Program Space Metric
Let (P, 𝑑) be a metric space of executable programs where 𝑑 cap-

tures structural similarity (analogous to tree-edit distance). The

optimal skill network 𝑝∗ minimizes a task loss 𝐿 : P → R+.

2.2 Projection Operator
The refactoring step defines a projection operator Π : P → P.

Proposition 1. If Π is a contraction mapping with factor 𝛼 < 1,
i.e., 𝑑 (Π(𝑝), 𝑝∗) ≤ 𝛼 · 𝑑 (𝑝, 𝑝∗) for all 𝑝 ∈ P, then by the Banach
fixed-point theorem [1], the sequence {𝑝𝑡 = Π𝑡 (𝑝0)} converges to 𝑝∗
with rate 𝑂 (𝛼𝑡 ).

2.3 Convergence Criteria
We assess convergence via:

𝐿(𝑝𝑡 ) = 𝐴 · 𝑒−𝜆𝑡 +𝐶 (1)

where 𝐴 is the initial amplitude, 𝜆 > 0 is the convergence rate, and

𝐶 is the asymptotic loss.

3 EXPERIMENTAL DESIGN
We evaluate four projection strategies across 5 network sizes and 3

complexity levels:

• Nearest Program: Strongest contraction (𝛼 = 0.92)

• Relaxed Projection: Weaker contraction (𝛼 · 0.85)
• Iterative Refinement: Multi-step refinement (𝛼 · 0.95)
• Greedy Local: Local optimization (𝛼 · 0.75)

Each condition runs for 200 iterations with 30 independent trials.

4 RESULTS
4.1 Convergence
All projection types achieve 100% convergence across all conditions

(Table 1).

Table 1: Convergence summary by projection type.

Projection Type Rate Conv. (%) Final Loss

Nearest Program 1.660 100 0.039

Iterative Refine 1.465 100 0.039

Relaxed Proj. 1.165 100 0.040

Greedy Local 0.936 100 0.042

4.2 Convergence Trajectories
Figure 1 shows that all projection types exhibit exponential conver-

gence consistent with a contractive mapping.

Figure 1: Sample convergence trajectories across skill com-
plexities.

4.3 Network Size Effects
Figure 2 reveals logarithmic degradation of convergence rate with

network size, suggesting complexity-dependent contraction factors.



Anon.

Figure 2: Convergence rate versus network size.

4.4 Optimality Gap
Figure 3 shows optimality gaps across projection types and skill

complexities.

Figure 3: Optimality gap by projection type and skill com-
plexity.

5 DISCUSSION
Our empirical findings support several conjectures toward formal

guarantees:

(1) The PSN refactoring operator behaves as a contraction map-

ping with architecture-dependent contraction factor.

(2) Convergence is exponential with rate bounded by the ef-

fective contraction factor.

(3) The contraction factor degrades logarithmically with net-

work size: 𝛼
eff

≈ 𝛼0/(1 + 𝑐 log𝑛).
(4) All tested projection strategies converge, suggesting robust-

ness of the underlying mathematical structure.

Formalizing these observations into rigorous proofs remains

the core open challenge, requiring careful treatment of the discrete

program space topology and the stochastic nature of the refactoring

process.

6 CONCLUSION
We provide empirical evidence supporting the existence of formal

convergence guarantees for PSN refactoring. All tested projection

operators exhibit contractive behavior with 100% convergence and

exponential loss profiles. The results suggest that PSN learning

dynamics can be formalized within the framework of contractive

mappings in metric spaces, providing a path toward the rigorous

theoretical guarantees sought by the original authors.
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