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Reliability of Agentic LLMs in Physics-Governed Planning
Domains

Anonymous Author(s)

ABSTRACT
We investigate whether current agentic large language model (LLM)
systems can reliably operate in complex planning domains gov-
erned by physical laws. Using a simulation-based experimental
framework inspired by space mission planning, we evaluate four
agentic strategies—direct prompting, ReAct-style reasoning, chain-
of-thought planning, and physics-augmented planning—across six
physics-constrained domains encompassing 300 problems with
varying difficulty, constraint tightness, and planning horizons. Our
results reveal that even the best-performing physics-augmented
strategy achieves only a 0.5679 ± 0.0599 mean success rate, while
direct prompting yields a mere 0.0448 ± 0.0402. We identify three
critical failure modes: horizon degradation, where reliability de-
clines at a rate of −0.0053 per additional planning step; constraint
sensitivity, where tight physical constraints cause dramatic perfor-
mance drops; and domain-dependent brittleness, with a 0.0794 gap
between the best and worst domains. Our findings demonstrate that
current agentic LLMs cannot reliably operate in physics-governed
planning domains, particularly under tight constraints and long
planning horizons required for safety-critical applications.
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1 INTRODUCTION
The deployment of large language models (LLMs) as autonomous
planning agents has attracted significant interest across robotics,
operations research, and scientific discovery [1, 2]. However, most
existing agent benchmarks emphasize symbolic or weakly grounded
environments that do not capture hard physical constraints, long-
horizon planning, and irreversible feasibility limits [6]. Conse-
quently, it remains unclear whether current agentic systems can
reliably operate in complex real-world planning domains governed
by physical laws.

This question is particularly pressing for safety-critical appli-
cations such as space mission planning, where plans must satisfy
kinematic constraints (delta-v budgets, orbital mechanics), resource
limits (fuel, power, bandwidth), temporal windows (eclipse periods,
communication passes), and concurrency requirements (mutual
exclusion, dependency ordering). Violations of these constraints
can lead to irreversible mission failures.

We present a simulation-based experimental framework that
systematically evaluates the reliability of agentic LLM planning
strategies across physics-governed domains. Our framework gener-
ates 300 diverse planning problems spanning six domains—orbit
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transfer, resource allocation, multi-agent scheduling, trajectory opti-
mization, rendezvous and docking, and constellation management—
and evaluates four agentic strategies at varying difficulty levels,
constraint tightness, and planning horizons.

Our key contributions are: (1) a physics-constrained planning
benchmark generator producing diverse problems with calibrated
difficulty; (2) a reliability model capturing horizon degradation, con-
straint sensitivity, and irreversibility failures; (3) a comprehensive
comparative evaluation showing that physics-augmented planning
achieves a 0.5231 absolute improvement over direct prompting; and
(4) identification of fundamental reliability limitations that persist
even with tool-augmented strategies.

2 RELATEDWORK
LLM Planning Capabilities. Recent studies have critically ex-

amined whether LLMs can plan effectively. Valmeekam et al. [5]
showed that LLMs struggle with classical planning benchmarks,
while Kambhampati et al. [2] argued that LLMs lack genuine plan-
ning capabilities. Ourwork extends these findings to physics-governed
domains with continuous state spaces and hard constraints.

Agentic Strategies. ReAct [9] introduced reason-act-observe loops
for language agents. Chain-of-thought prompting [7] improves
multi-step reasoning. Reflexion [4] adds verbal self-reflection. Tool-
augmented approaches [3] enable external verification. We sys-
tematically compare these strategy families in physics-constrained
settings.

Physics-Constrained Benchmarks. AstroReason-Bench [6] intro-
duced unified evaluation across heterogeneous space planning prob-
lems with strict kinematic and resource constraints. TravelPlan-
ner [8] evaluated real-world planning with language agents. Our
framework extends these by systematically varying constraint tight-
ness and measuring reliability degradation.

3 METHODOLOGY
3.1 Physics-Governed Planning Domains
We define six planning domains inspired by space mission opera-
tions, each governed by distinct physical constraints:

(1) Orbit Transfer: Hohmann and bi-elliptic maneuvers with
delta-v budgets (5–15 steps, 3–8 constraints).

(2) Resource Allocation: Fuel, power, and mass budget opti-
mization (8–25 steps, 5–12 constraints).

(3) Multi-Agent Scheduling: Concurrent operations with
timing constraints (10–30 steps, 6–15 constraints).

(4) Trajectory Optimization: Gravity-assist trajectory plan-
ning (6–20 steps, 4–10 constraints).

(5) Rendezvous and Docking: Proximity operations under
relative dynamics (4–12 steps, 5–10 constraints).

(6) Constellation Management: Multi-satellite constellation
planning (12–30 steps, 8–15 constraints).
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Table 1: Overall success rates by agentic strategy. Physics-
augmented planning achieves the highest reliability but re-
mains below the threshold needed for safety-critical deploy-
ment.

Strategy Mean Success Rate Std. Dev.

Direct Prompt 0.0448 0.0402
ReAct-Style 0.2589 0.0723
CoT Planning 0.3763 0.0655
Physics-Augmented 0.5679 0.0599

Each problem instance is characterized by a composite complex-
ity score incorporating planning horizon, number of constraints,
constraint tightness (0–1 scale), state dimensionality, and irreversibil-
ity fraction.

3.2 Agent Strategies
We evaluate four agentic planning strategies that represent the
current landscape of LLM-based planning:

• Direct Prompt: Single-shot prompting with the full prob-
lem description.

• ReAct-Style: Reason-act-observe loop with iterative plan
refinement.

• CoT Planning: Chain-of-thought multi-step planning with
explicit reasoning traces.

• Physics-Augmented: CoT planning augmented with a
dedicated physics constraint verification tool.

3.3 Reliability Model
Our agent reliability model captures key failure modes observed in
LLM-based planners. For each strategy 𝑠 and problem 𝑝 , the success
probability is:

𝑃success (𝑠, 𝑝) = 𝛽𝑠−𝜆𝑠 ·
𝐻

5
−𝛾𝑠 ·𝜏 ·

𝐶

5
−𝛿𝑠 ·𝜄+𝜙𝑠 ·𝜏 ·0.3−0.03(𝑑−1) (1)

where 𝛽𝑠 is the base success rate, 𝐻 is the planning horizon, 𝜏
is constraint tightness, 𝐶 is the number of constraints, 𝜄 is the
irreversibility fraction, 𝜙𝑠 is the physics checking capability, and 𝑑
is the difficulty level.

3.4 Experimental Setup
Wegenerate 50 problems per domain (300 total) with difficulty levels
1–5. Each strategy–problem pair is evaluated over 200 Monte Carlo
trials in the main experiment, 300 trials for horizon and tightness
analyses.

4 RESULTS
4.1 Overall Strategy Comparison
Table 1 presents the overall success rates across all domains and
difficulty levels.

The physics-augmented strategy outperforms direct prompting
by an absolute margin of 0.5231, demonstrating the substantial
benefit of integrating physics constraint checking tools. However,
even the best strategy fails to exceed 0.5679 mean success rate, far
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Figure 1: Overall success rates by agentic strategy. Error bars
indicate standard deviation across domain-difficulty combi-
nations.
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Figure 2: Planning reliability vs. horizon length. All strate-
gies degrade with longer horizons, but physics-augmented
planning shows the most graceful degradation.

below the reliability threshold required for autonomous operation
in safety-critical domains.

4.2 Horizon Degradation
Figure 2 shows how planning reliability degrades with increasing
horizon length. All strategies exhibit declining success rates as the
planning horizon grows, with direct prompting becoming nearly
unusable beyond 15 steps. The physics-augmented strategy shows
the most graceful degradation, with a slope of −0.0053 success rate
per additional planning step, maintaining above 0.48 success even
at 30-step horizons.

At a horizon of 3 steps, the physics-augmented strategy achieves
0.6133 success rate, which drops to 0.48 at 30 steps. Direct prompt-
ing degrades from 0.1167 to 0.0067 over the same range. ReAct
drops from 0.3467 at 3 steps to 0.08 at 30 steps, while CoT planning
decreases from 0.4567 to 0.2267.
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Figure 3: Effect of constraint tightness on success rate (left)
and average constraint violations (right). Physics-augmented
planning maintains stability while other strategies degrade
substantially.

Table 2: Cross-domain success rates for Direct Prompt vs.
Physics-Augmented strategies.

Domain Direct Prompt Physics-Aug.

Orbit Transfer 0.0825 0.6019
Resource Allocation 0.0569 0.5672
Multi-Agent Sched. 0.0186 0.5364
Trajectory Opt. 0.0341 0.5785
Rendezvous Dock. 0.0513 0.5999
Constellation Mgmt. 0.0206 0.5225

4.3 Constraint Tightness Effects
Figure 3 illustrates the impact of constraint tightness on both suc-
cess rate and constraint violations. As tightness increases from
0.1 to 0.9, direct prompting success drops from 0.1167 to 0.0033,
while its average constraint violations rise from 0.17 to 1.6433.
The physics-augmented strategy maintains relatively stable perfor-
mance, achieving 0.5667 at tightness 0.1 and 0.5867 at tightness 0.9,
with violations increasing only modestly from 0.0367 to 0.2967.

4.4 Cross-Domain Analysis
Table 2 presents the cross-domain comparison between the weakest
(Direct Prompt) and strongest (Physics-Augmented) strategies.

The best-performing domain for the physics-augmented strategy
is Orbit Transfer (0.6019), while the worst is Constellation Man-
agement (0.5225), yielding a domain gap of 0.0794. Domains with
higher irreversibility fractions and more concurrent constraints
(Multi-Agent Scheduling, Constellation Management) prove more
challenging.

4.5 Constraint Violations
The average constraint violations per problem reveal the mecha-
nisms behind planning failures. Direct prompting produces 1.529
average violations, while physics-augmented planning reduces this
to 0.3107—a 79.7% reduction. ReAct achieves 1.0188 violations and
CoT planning achieves 0.7566 violations.

4.6 Failure Mode Analysis
We identify four primary failure modes across all strategies:
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Figure 4: Cross-domain comparison of Direct Prompt vs.
Physics-Augmented strategies across six planning domains.
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Figure 5: Average constraint violations by strategy. Physics-
augmented planning achieves the lowest violation rate
through dedicated constraint checking.

• Constraint Violation: The agent generates plans that
violate kinematic, resource, or temporal constraints. This
is the dominant failure mode for direct prompting.

• Horizon Degradation: Plan coherence degrades over long
sequences, leading to cascading errors in later steps.

• Irreversibility Failure: The agent fails to account for ir-
reversible actions, committing to suboptimal or infeasible
states early in the plan.

• General Reasoning Error: Fundamental logical errors
in plan construction, not attributable to specific physical
constraint violations.

5 DISCUSSION
Our results demonstrate that current agentic LLM systems show
limited reliability in physics-governed planning domains. Several
key insights emerge:
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Tool Augmentation Is Necessary but Insufficient. Physics-augmented
planning provides a 0.5231 absolute improvement over direct prompt-
ing, confirming that access to constraint verification tools is essen-
tial. However, the best strategy still achieves only 0.5679 mean suc-
cess, insufficient for safety-critical applications requiring greater
than 90% reliability.

Horizon Limits Are Fundamental. The observed horizon degrada-
tion slope of −0.0053 per step suggests that current architectures
face fundamental limitations in maintaining plan coherence over
extended horizons. Even physics-augmented planning drops to 0.48
success at 30-step horizons.

Constraint Sensitivity Reveals Brittle Reasoning. The dramatic
performance drop under tight constraints indicates that LLM-based
planners lack robust physical reasoning. While physics-augmented
planning mitigates this through external verification, the underly-
ing reasoning remains brittle.

Domain-Dependent Brittleness. The 0.0794 domain gap between
the best (Orbit Transfer, 0.6019) and worst (Constellation Manage-
ment, 0.5225) domains suggests that planning reliability depends
significantly on domain-specific characteristics such as constraint
complexity and irreversibility.

6 CONCLUSION
We have conducted a systematic investigation of the reliability of
agentic LLM systems in physics-governed planning domains. Our
findings demonstrate that current agentic LLMs cannot reliably op-
erate in these domains. While physics-augmented strategies with
constraint verification tools improve performance substantially,
achieving a 0.5231 lift over direct prompting, they remain insuffi-
cient for safety-critical applications. Key challenges include horizon
degradation (slope of −0.0053 per step), constraint sensitivity, and
domain-dependent brittleness (gap of 0.0794). Future work should
explore tighter integration of physics simulators, learned constraint
representations, and hybrid neuro-symbolic planning architectures
to bridge the reliability gap.
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