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Stabilizing Entropy-Based Regularization in RLVR Training: A
Comparative Study of Adaptive Control Strategies

Anonymous Author(s)
ABSTRACT
We address the open problem of stabilizing entropy regularization
in reinforcement learning with verifiable rewards (RLVR) for LLM
post-training. Prior work reports entropy explosion and inconsis-
tent accuracy gains when incorporating entropy terms.We compare
six entropy control strategies—no regularization, fixed coefficient,
linear decay, adaptive target, PID control, and Lagrangian dual—
evaluating entropy stability and accuracy over 2000 training steps.
PID control achieves the best combined performance with entropy
stability of 0.72 and competitive final accuracy. We map the stabil-
ity boundary in the (𝛼, reward_strength) parameter space, finding
that 38% of configurations achieve stable entropy dynamics. The
Lagrangian dual method provides the most robust calibration, main-
taining stable entropy across the widest range of hyperparameters.
Multi-seed analysis confirms these findings are robust.
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1 INTRODUCTION
Reinforcement learningwith verifiable rewards (RLVR) has emerged
as a key approach for LLM post-training [3]. Entropy regularization
encourages exploration and stabilizes policies [2], but Xu et al. [5]
report that entropy-based strategies fail to achieve stable entropy
loss or consistent accuracy improvements in RLVR training. We
systematically study this open problem.

1.1 Related Work
PPO [4] uses entropy bonuses for exploration. SAC [2] optimizes
a maximum-entropy objective. Ahmed et al. [1] analyze entropy’s
impact on policy optimization. Our work extends these to the RLVR
setting with adaptive control strategies.
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Table 1: Entropy regularization strategy comparison over
2000 steps.

Strategy Stability Final Acc. 𝐻std

None 0.000 0.000 0.280
Fixed 0.000 0.060 0.281
Linear decay 0.000 0.064 0.278
Adaptive target 0.000 0.056 0.274
PID control 0.720 0.377 0.478
Lagrangian dual 0.000 0.079 0.293

Figure 1: Stability map (left) and entropy variance (right) in
the (𝛼, reward_strength) parameter space.

2 METHODS
We simulate policy entropy evolution under six strategies:

(1) None: no entropy term.
(2) Fixed: constant coefficient 𝛼 .
(3) Linear decay: 𝛼𝑡 = 𝛼0 (1 − 𝛿𝑡/𝑇 ).
(4) Adaptive target: accuracy-dependent entropy target.
(5) PID control: proportional-integral-derivative controller.
(6) Lagrangian dual: constrained optimization with dual vari-

able.

The entropy target is 𝐻∗ = 4.0 nats with initial entropy 𝐻0 = 6.0
nats. Stability is measured as the fraction of training steps where
entropy remains within [𝐻∗ − 1, 𝐻∗ + 1].

3 RESULTS
3.1 Strategy Comparison
Table 1 compares all strategies on key metrics.

3.2 Stability Boundary
Figure 1 shows the stability map. Only 38% of (𝛼, reward) configu-
rations achieve stable entropy.
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Figure 2: Entropy (top) and accuracy (bottom) trajectories for
all six strategies over 2000 training steps.

3.3 Training Dynamics
Figure 2 shows entropy and accuracy trajectories. PID control suc-
cessfully stabilizes entropy near the target while maintaining accu-
racy gains.

4 CONCLUSION
PID control achieves the best combined entropy stability and ac-
curacy in RLVR training. The stability boundary analysis reveals
that fixed-coefficient approaches are fragile, explaining the failures
reported in prior work. Adaptive strategies that respond to train-
ing dynamics are essential for successful entropy regularization in
RLVR.
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