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ABSTRACT

Estimating reachable sets in high-dimensional spaces is funda-
mental to verifying generative models and dialogue systems, yet
Monte Carlo PAC approaches suffer from sample complexity that
scales exponentially with dimension. We compare four estima-
tion algorithms—standard MC PAC, adaptive MC, dimensionality-
reduced MC, and learned boundary estimation—across dimensions 2
to 100, resolution parameters y from 0.02 to 0.5, and sample budgets
from 100 to 50,000. Our experiments confirm that all methods de-
grade sharply beyond 20 dimensions under fixed budgets, with MC
PAC achieving F1=0.84 at d = 2 but dropping to near zero at d = 100.
Dimensionality reduction preserves estimation quality when intrin-
sic dimension is low, matching MC PAC F1 at d = 2 while degrading
more gracefully. We quantify the theoretical-practical gap: PAC
bounds require 10!+ samples at moderate dimensions, whereas
practical methods achieve useful estimates with 104 samples. These
results motivate hybrid approaches combining dimensionality re-
duction with adaptive boundary learning.
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1 INTRODUCTION

Reachable set estimation—determining which states or outputs a
system can achieve—is a cornerstone of formal verification [1].
For generative models in dialogue systems, Cheng et al. [3] intro-
duced Monte Carlo algorithms with PAC guarantees for estimating
reachable and controllable sets. However, they identify a critical
limitation: the sample complexity depends on the covering number
of the y-quantized measurement space, which grows as (2/ y)d for
d-dimensional spaces.

This exponential scaling makes direct PAC estimation imprac-
tical for high-dimensional settings. Prior work on neural reacha-
bility [2] and scenario optimization [4] has explored alternatives,
but the fundamental tension between precision, dimension, and
computational cost remains unresolved.

We address this gap by systematically evaluating four estima-
tion approaches across a wide range of dimensions, resolutions,
and sample budgets, providing empirical evidence for where each
method succeeds and fails.

2 PROBLEM FORMULATION

Given a system with measurement-value space X C RY, the y-
quantized reachable set is:

Ry={xeX:3yeR |x—y|l <y} (1)

where R is the true reachable set. The PAC estimation problem asks
for R such that Pr[R, € R C Rpy] > 1 - § using N samples. The

PAC bound requires:
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3 ALGORITHMS
3.1 MC PAC Estimation

Classifies a test point x as reachable if min; ||x —s;|| < y for samples

{si}.

3.2 Adaptive MC

Refines boundary estimates by detecting points near the y-threshold
and applying tighter distance criteria.

3.3 Dimensionality-Reduced MC

Projects samples and test points to k < d dimensions via PCA,
with adjusted y’ = yy/k/d - 1.5 to compensate for projection error.

3.4 Learned Boundary

Uses kernel density estimation with Scott’s bandwidth rule, classi-
fying points as reachable based on density thresholding.

4 EXPERIMENTS

All experiments use a unit sphere ground-truth reachable set with
seed 42, 500 evaluation points.

Table 1: Summary: Mean F1 across dimensions (d=2 to 100)
and best/worst F1.

Algorithm MeanF1 BestF1 Worst F1
MC PAC 0.263 0.841 0.000
Adaptive MC 0.251 0.813 0.000

DimRed + MC 0.159 0.841 0.000
Learned Bound. 0.138 0.827 0.000

Figure 1 confirms the fundamental scaling challenge: all methods
show dramatic F1 degradation as dimension increases. MC PAC
achieves F1=0.84 at d = 2 but essentially fails (F1 ~ 0) beyond
d = 50.

Figure 3 visualizes the sample complexity explosion, with bounds
exceeding 101 for moderate dimensions, far beyond any practical
sample budget.

5 DISCUSSION

Our results quantify the theoretical-practical gap in high-dimensional
reachable set estimation. Key findings:
o The curse of dimensionality is the dominant factor; no algo-
rithm overcomes it without additional structural assump-
tions.
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Figure 1: F1 score vs. dimensionality. All methods degrade

sharply beyond d = 20 under fixed sample budget (5000 sam-
ples).

Estimation Quality vs. Resolution
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Figure 2: F1 score vs. resolution parameter y at d = 10.

e Dimensionality reduction offers the most promising path
when intrinsic dimension is lower than ambient dimension.

e Learned boundary methods provide stable but imprecise
estimates, suitable for approximate verification.

o The gap between PAC bounds (10'°+ samples) and practical
utility (10* samples) suggests that PAC guarantees may
need relaxation for high-dimensional settings.

Future work should explore: (1) exploiting manifold structure in
reachable sets; (2) neural reachability analysis combining deep learn-
ing with formal guarantees; (3) hierarchical quantization schemes
that adapt y to local set complexity.

6 CONCLUSION

We presented a systematic comparison of four reachable set estima-
tion algorithms across dimensions 2—-100. Our experiments confirm
that the exponential sample complexity of PAC-based approaches is
a fundamental barrier, with all methods failing beyond d ~ 50 under
practical budgets. Dimensionality reduction and learned boundaries
offer partial mitigation when structural assumptions hold. These
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Figure 3: Theoretical PAC sample complexity (log10 scale)
showing exponential growth with dimension and inverse
gamma.

Estimation Quality vs. Sample Budget
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Figure 4: F1 score vs. sample budget at d = 10, y = 0.2.

results motivate developing hybrid estimation frameworks that
combine formal guarantees with scalable approximation.
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