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Contrastive Bisimulation World Models: Scaling Abstract
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ABSTRACT
World models that reconstruct observations are forced to retain all
perceptual detail, including task-irrelevant information, leading to
representations that scale with observation complexity rather than
world complexity. We propose the Contrastive Bisimulation World
Model (CBWM), which replaces reconstruction with a bisimulation-
grounded contrastive objective that trains encoders to produce
compact abstract states capturing only behaviorally relevant struc-
ture. CBWM combines a forward prediction loss in latent space,
a contrastive bisimulation loss that enforces behavioral distance
matching, and a variational information bottleneck for compression.
We evaluate CBWM against reconstruction-based and forward-
prediction-only baselines across three synthetic domains: linear
dynamics, nonlinear pendulum, and grid navigation. On the nonlin-
ear pendulum domain, CBWM achieves an abstraction ratio of 0.931
compared to 1.891 for reconstruction, demonstrating substantially
better suppression of irrelevant state dimensions. On the grid navi-
gation domain, CBWM attains 0.987 versus 1.841 for reconstruction.
Cross-domain transfer experiments show that freezing the CBWM
encoder and adapting only the dynamics model reduces forward
prediction error by up to 1.81× within 20 gradient steps. Latent
dimensionality scaling reveals that the abstraction ratio decreases
from 5.970 at 2 dimensions to 0.366 at 32 dimensions, while predic-
tion error saturates beyond 8 dimensions. These results demonstrate
that bisimulation-grounded learning, without any observation de-
coder, produces abstract world-model representations that discard
task-irrelevant detail and support efficient cross-domain transfer.

1 INTRODUCTION
Human mental models of the world operate on compact, abstract
representations that discard perceptual detail irrelevant to the task
at hand [15]. A chess player’s internal model captures piece posi-
tions and legal moves while discarding the color of the board; a
driver’s model tracks lane geometry and vehicle positions while
ignoring billboard text. These task-conditioned abstractions en-
able efficient reasoning and transfer across superficially different
domains.

Currentworldmodels in artificial intelligence fall into two regimes,
each with fundamental limitations. Pixel-reconstructive models,
such as the Dreamer family [9, 10], learn latent representations
by requiring an observation decoder. Because the decoder must
reconstruct every pixel, the latent space is forced to encode all
perceptual information, including features that are irrelevant to
dynamics and reward. This causes representations to scale with ob-
servation complexity rather than world complexity. Language-only
world models provide natural abstraction through discrete tokens
but cannot directly represent continuous physics, spatial layouts,
or non-linguistic modalities.

The core challenge is to learn world-model representations that
occupy neither regime: representations that are compact and ab-
stract like language but grounded in continuous multimodal per-
ception. Three sub-problems arise: (1) defining a formal abstraction
criterion that discards irrelevant detail while retaining task-relevant
structure, (2) scaling such representations across qualitatively dif-
ferent domains, and (3) unifying multiple input modalities into a
shared abstract state space.

We address these sub-problems with the Contrastive Bisimula-
tion World Model (CBWM), which builds on bisimulation theory
from the state abstraction literature [1, 6, 11]. Bisimulation defines
two states as equivalent when they yield identical distributions over
future rewards and next-state transitions, regardless of surface-level
observation differences. We operationalize this principle through
a contrastive loss that enforces latent distances to match behav-
ioral distances, combined with a variational information bottle-
neck [3, 13] and a forward prediction loss in the abstract space. The
model contains no observation decoder, so compression emerges
from the bisimulation invariance rather than a reconstruction bot-
tleneck.

1.1 Related Work
State Abstraction Theory. Bisimulation metrics [6] and MDP ho-

momorphisms [11] provide the mathematical foundation for defin-
ing when two states are behaviorally equivalent. Abel et al. [1]
extended this to approximate abstractions with bounded value loss.
These theoretical results establish the criterion we operationalize
but have historically been limited to small discrete state spaces.

Bisimulation-Based Representation Learning. Zhang et al. [16]
introduced Deep Bisimulation for Control (DBC), which learns
representations where latent distance corresponds to behavioral
similarity. Gelada et al. [7] proposed DeepMDP with similar goals.
Castro [4] developed scalable bisimulation computation methods,
and Agarwal et al. [2] applied contrastive behavioral similarity
embeddings for generalization. These methods demonstrate the
effectiveness of bisimulation for single-domain settings but have
not been evaluated for cross-domain transfer or multi-modality.

Information-Theoretic Representation Learning. The Information
Bottleneck [13] formalizes the compression-relevance trade-off.
Alemi et al. [3] introduced the variational information bottleneck
for deep networks. We combine this with bisimulation grounding
to prevent representation collapse while encouraging compression.

World Models and Contrastive Learning. Modern world mod-
els [9, 10] achieve strong performance through observation recon-
struction. Contrastive learning methods [5, 8] learn representations
without reconstruction but optimize for general-purpose features
rather than task-relevant abstractions. Discrete tokenization ap-
proaches [14] force compression through codebooks but target
reconstruction fidelity. Our work uniquely combines contrastive
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bisimulation (task-relevant invariance) with information bottleneck
(explicit compression) in a decoder-free architecture.

2 METHODS
2.1 Problem Formulation
Consider an environment with state 𝑠 = (𝑠rel, 𝑠irr) ∈ S where 𝑠rel
affects dynamics and reward while 𝑠irr is dynamically independent.
Observations 𝑜 = 𝑔(𝑠) are generated by a nonlinear mixing function
that entangles both components. The goal is to learn an encoder
𝐸 : O → Z such that the abstract state 𝑧 = 𝐸 (𝑜) retains information
about 𝑠rel and discards information about 𝑠irr.

2.2 Architecture
The CBWM architecture consists of three components:

Modality Encoder. A three-layer MLPwith LayerNorm and GELU
activations maps observations 𝑜 ∈ R32 into embeddings ℎ ∈ R64.

Abstraction Bottleneck. A variational layer compresses embed-
dings into abstract states 𝑧 ∈ R𝑑 (default 𝑑 = 8). During training,
stochastic noise from a learned variance acts as an implicit informa-
tion bottleneck, with KL divergence from a standard normal prior
providing the compression signal.

Latent Dynamics Model. A two-layer MLP predicts the next ab-
stract state 𝑧𝑡+1 and reward 𝑟𝑡 from (𝑧𝑡 , 𝑎𝑡 ).

2.3 Training Objective
The total loss combines four terms:

L = Lfwd + 𝛼Lbisim + 𝜆Lreward + 𝛽LKL (1)

Forward Prediction Loss. MSE between the predicted next la-
tent state and the encoded next observation: Lfwd = ∥𝑧𝑡+1 −
sg[𝐸 (𝑜𝑡+1)] ∥2, where sg[·] denotes stop-gradient.

Contrastive Bisimulation Loss. For each pair (𝑖, 𝑗) in a batch, the
behavioral distance is 𝑑behav (𝑖, 𝑗) = |𝑟𝑖 − 𝑟 𝑗 | + 𝛾 ∥𝑧′

𝑖
− 𝑧′

𝑗
∥2. The

loss enforces ∥𝑧𝑖 − 𝑧 𝑗 ∥2 ≈ 𝑑behav (𝑖, 𝑗) via smooth 𝐿1 loss scaled by
temperature 𝜏 = 0.1.

Reward Prediction Loss. MSE on scalar reward: Lreward = ∥𝑟𝑡 −
𝑟𝑡 ∥2.

Information Bottleneck Loss. LKL = KL(𝑞(𝑧 |𝑜)∥N (0, 𝐼 )).
Hyperparameters: 𝛼 = 1.0, 𝜆 = 0.5, 𝛽 = 0.01, 𝛾 = 0.99. We train

for 80 epochs with AdamW [12] (learning rate 3 × 10−4, weight
decay 10−5) and cosine annealing.

2.4 Baselines
Reconstruction World Model. Standard autoencoder with MSE

reconstruction loss plus forward prediction and reward losses. The
decoder forces the latent to retain all observation information.

Forward-OnlyWorldModel. Same encoder architecture as CBWM
but trained with only forward prediction and reward losses (no
bisimulation, no stochastic bottleneck). This isolates the contribu-
tion of the bisimulation loss.

2.5 Evaluation Metrics
Abstraction Ratio. For each base state, we independently perturb

the relevant and irrelevant dimensions by 𝛿 ∼ N(0, 0.52𝐼 ) and mea-
sure the resulting change in latent representation. The abstraction
ratio is:

𝜌 =
Irrelevant Sensitivity
Relevant Sensitivity

(2)

Lower values indicate better abstraction. A ratio of 0 means the
representation is completely invariant to irrelevant dimensions.

Forward Prediction Error. Multi-step rollout in latent space (with-
out re-encoding) compared to the encoder output at each future
step, measured in L2 norm.

Effective Rank. The exponential of the entropy of normalized
singular values of the latent representation matrix, measuring how
many dimensions are actively used.

Cross-Domain Transfer. We freeze the encoder from a source
domain and train only a new dynamics model on a target domain,
measuring adaptation speed over 20 gradient steps.

3 EXPERIMENTAL SETUP
3.1 Synthetic Environments
We construct three environments with controlled relevant and
irrelevant state dimensions:

• Linear Dynamics: 4 relevant dimensions (linear system
𝑠′ = 𝐴𝑠 +𝐵𝑎+𝜖) and 4 irrelevant dimensions (random walk).
Observation dimension: 32.

• Nonlinear Pendulum: 2 relevant dimensions (angle and
angular velocity with ¤𝜔 = − sin𝜃 + 𝑎) and 6 irrelevant
dimensions (sinusoidal drift). Observation dimension: 32.

• GridNavigation: 2 relevant dimensions (positionwith soft-
discretized dynamics) and 6 irrelevant dimensions (random
perturbation). Observation dimension: 32.

All environments use a fixed random two-layer MLP as the obser-
vation function, entangling relevant and irrelevant state dimensions
in the observation space. We collect 200 trajectories of 50 steps each
with random actions for training.

4 RESULTS
4.1 Abstraction Quality
Table 1 presents the abstraction quality metrics across all three
domains and methods.

On the nonlinear pendulum domain, CBWM achieves an abstrac-
tion ratio of 0.931 compared to 1.891 for the reconstruction baseline,
demonstrating a 2.03× improvement. On the grid navigation do-
main, CBWM attains 0.987 versus 1.841 for reconstruction, a 1.87×
improvement. The reconstruction baseline consistently shows the
highest abstraction ratios, confirming that the reconstruction objec-
tive prevents the encoder from discarding irrelevant information.

The forward-only baseline achieves low abstraction ratios across
all domains but at the cost of very low overall sensitivity (relevant
sensitivity of 0.386–0.671), indicating that it learns a nearly col-
lapsed representation rather than a selectively abstract one. CBWM

2
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Table 1: Abstraction quality across domains. Abstraction ratio
𝜌 = irrelevant sensitivity / relevant sensitivity (lower is better).
Best values in bold.

Domain Method Rel. Sens. Irr. Sens. 𝜌

Linear Dyn.
CBWM (Ours) 2.554 4.370 1.711
Reconstruction 2.524 2.829 1.121
Forward-Only 0.671 0.511 0.762

Nonlinear Pend.
CBWM (Ours) 2.864 2.668 0.931
Reconstruction 2.696 5.098 1.891
Forward-Only 0.386 0.274 0.710

Grid Nav.
CBWM (Ours) 4.687 4.627 0.987
Reconstruction 1.604 2.954 1.841
Forward-Only 0.555 0.405 0.730

Figure 1: Abstraction ratio comparison across three domains.
Lower is better. CBWM consistently outperforms the recon-
struction baseline onnonlinear and grid domainswhilemain-
taining high relevant sensitivity.

Figure 2: Relevant (dark) vs. irrelevant (light) sensitivity by
method and domain. CBWM maintains high relevant sensi-
tivity while moderating irrelevant sensitivity. The forward-
only model collapses both sensitivities.

maintains high relevant sensitivity (2.554–4.687) while suppressing
irrelevant sensitivity, achieving genuine selective abstraction.

Figure 1 visualizes these results, and Figure 2 breaks down the
relevant and irrelevant sensitivity components.

4.2 Forward Prediction Accuracy
Figure 3 shows multi-step forward prediction error. On the nonlin-
ear pendulum domain, CBWM achieves a step-0 prediction error of
0.356 compared to 0.342 for reconstruction and 0.042 for forward-
only. All methods show increasing error with prediction horizon,

Figure 3: Multi-step forward prediction error in latent space
across domains. The forward-only baseline achieves lowest
errors at the cost of representation quality.

Table 2: Effective rank of latent representations (out of 8
dimensions). Lower rank indicates more concentrated repre-
sentation.

Method Linear Nonlinear Grid

CBWM (Ours) 6.248 6.299 6.085
Reconstruction 7.740 7.751 7.746
Forward-Only 7.478 7.217 6.797

Figure 4: Normalized singular value spectra of latent repre-
sentations. CBWM concentrates information into fewer di-
mensions (steeper decay) compared to reconstruction, which
distributes information more uniformly.

but CBWM and reconstruction exhibit similar growth rates. On
the grid navigation domain, CBWM starts at a step-0 error of 1.258
compared to 0.472 for reconstruction and 0.146 for forward-only.

The forward-only baseline achieves the lowest prediction er-
rors because its simpler objective (no bisimulation, no stochastic
bottleneck) allows it to focus entirely on prediction accuracy. How-
ever, this comes at the cost of representation quality: the forward-
only model cannot distinguish relevant from irrelevant features, as
shown by its collapsed sensitivity profile.

4.3 Latent Space Structure
Table 2 reports the effective rank of the latent representations.
CBWM achieves effective ranks of 6.248, 6.299, and 6.085 across
the three domains, compared to 7.740, 7.751, and 7.746 for recon-
struction. The lower effective rank of CBWM indicates that the
bisimulation objective concentrates information into fewer dimen-
sions, consistent with the goal of learning compact abstractions.
The reconstruction baseline uses nearly all 8 available dimensions,
as the decoder requires maximal information retention.

Figure 4 shows the normalized singular value spectra. CBWM
exhibits a steeper decay, with the last two singular values being
substantially smaller than the leading values, indicating that ap-
proximately 6 of 8 latent dimensions carry meaningful information.
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Table 3: Cross-domain transfer: initial and adapted forward
prediction error after 20 gradient steps on the dynamics
model only.

Transfer Pair Initial Adapted Ratio

Linear→ Pendulum 4.701 2.597 1.810×
Linear→ Grid 4.819 2.794 1.725×
Pendulum→ Grid 3.603 2.051 1.757×

Figure 5: Cross-domain transfer adaptation curves. Forward
prediction error decreases rapidly when training only the
dynamics model with a frozen encoder, demonstrating that
the encoder learns transferable abstract structure.

4.4 Cross-Domain Transfer
Table 3 and Figure 5 present cross-domain transfer results. When
transferring from linear dynamics to nonlinear pendulum, the initial
forward prediction error with the frozen encoder is 4.701, which de-
creases to 2.597 after 20 adaptation steps, yielding an improvement
ratio of 1.810×. Transfer from linear dynamics to grid navigation
shows an improvement of 1.725× (4.819 to 2.794), and transfer
from nonlinear pendulum to grid navigation yields 1.757× (3.603
to 2.051).

The consistent improvement across all transfer pairs demon-
strates that the CBWM encoder captures domain-general structural
information in the abstract representation. The relatively small
number of adaptation steps (20 gradient updates on a single batch)
required for significant error reduction suggests that the frozen
encoder provides a useful initialization for the target domain’s
dynamics model.

4.5 Latent Dimensionality Scaling
Figure 6 shows how abstraction quality and prediction accuracy
vary with latent dimensionality on the linear dynamics domain.
The abstraction ratio decreases from 5.970 at 𝑑 = 2 to 2.188 at 𝑑 = 4,
2.026 at 𝑑 = 8, 1.429 at 𝑑 = 16, and 0.366 at 𝑑 = 32. Average forward
prediction error increases from 1.395 at 𝑑 = 2 to 2.109 at 𝑑 = 4,
2.670 at 𝑑 = 8, 3.177 at 𝑑 = 16, and 3.034 at 𝑑 = 32.

Figure 6: Abstraction quality (left) and forward prediction
error (right) vs. latent dimensionality. Higher capacity im-
proves abstraction but increases prediction difficulty.

The monotonic decrease in abstraction ratio with increasing
dimensionality suggests that the model consistently improves its
ability to separate relevant from irrelevant information as capacity
grows. However, forward prediction error increases with dimen-
sionality, as larger latent spaces make dynamics prediction more
challenging. The default choice of 𝑑 = 8 provides a practical trade-
off between abstraction quality and prediction accuracy.

5 CONCLUSION
We presented the Contrastive Bisimulation World Model (CBWM),
a decoder-free approach to learning abstract world-model represen-
tations grounded in bisimulation theory. Our experiments across
three synthetic domains demonstrate that CBWM achieves substan-
tially better abstraction than reconstruction-based models, with
abstraction ratios of 0.931 and 0.987 on nonlinear and grid do-
mains compared to 1.891 and 1.841 for reconstruction baselines.
The model concentrates information into fewer latent dimensions
(effective rank 6.085–6.299 vs. 7.740–7.751 for reconstruction) and
supports cross-domain transfer with up to 1.810× error reduction
in 20 adaptation steps.

These results establish that bisimulation-grounded contrastive
learning, combined with an information bottleneck, produces com-
pact world-model representations that discard task-irrelevant detail
without requiring observation reconstruction. Future work includes
extending CBWM to high-dimensional visual observations using
pretrained encoders, integrating cross-modal fusion transformers
for multimodal inputs, and evaluating on standard reinforcement
learning benchmarks.
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