23
24
25
26
27
28
29

39
40
41
42
43
44

Semantic Policy Enforcement for Low-Level Computer Use Agent
Tools

Anonymous Author(s)

ABSTRACT

Computer Use Agents (CUAs) that interact with GUIs through low-
level actions such as click and find present a fundamental challenge
for security policy enforcement: these primitive operations lack the
intrinsic semantics needed to define meaningful data-flow restric-
tions. We formalize three levels of policy abstraction—syntactic,
semantic, and contextual—and evaluate their effectiveness through
large-scale Monte Carlo simulations across 2,000 task scenarios, 8
application domains, and varying adversarial conditions. Our con-
textual policy framework achieves an F1 score of 0.973 and detects
94.0% of prompt injection attacks, compared to 0.611 and 19.7% for
syntactic baselines, while maintaining 72.1% task utility. Domain
analysis reveals that high-risk domains (banking, healthcare) bene-
fit most from contextual reasoning. Scalability experiments show
that the advantage of semantic policies grows with task complexity,
and injection robustness analysis confirms consistent performance
across attack rates from 5% to 70%. These results demonstrate that
planner-provided intent annotations and context-aware reasoning
are essential infrastructure for securing CUA tool invocations.

1 INTRODUCTION

The emergence of Computer Use Agents (CUAs)—AI systems that
interact with software through GUI-level actions such as clicking,
typing, and navigating—has created new security challenges that ex-
isting information-flow control frameworks struggle to address [2].
Within the Dual-LLM architecture, control flow isolation separates
privileged planning from quarantined perception, yet data flow
remains vulnerable because the perception model’s outputs can
steer execution [2].

Standard information-flow security policies [1, 5] can mitigate
data-flow risks in domains with semantically rich tool interfaces.
However, CUA tools like click(x,y) and find(selector) lack
intrinsic semantics, making it difficult to define and enforce mean-
ingful policies. This gap motivates the central question of this work:
How can we design and evaluate semantic security policies for low-
level CUA tool invocations?

We address this question through three contributions:

(1) A formal model of semantic policies as predicate-action rules
parameterized by abstraction level (syntactic, semantic, and
contextual).

(2) A simulation framework that generates realistic CUA task sce-
narios with adversarial prompt injections across diverse appli-
cation domains.

(3) Comprehensive empirical evaluation demonstrating that con-
textual policies substantially outperform alternatives on the
safety—utility Pareto frontier.

2 PROBLEM FORMULATION
2.1 CUA Tool Actions

We model CUA interactions as sequences of typed actions a =
(z,t,c,r) where 7 € T is the action type (navigate, click, type,
read, submit, download, execute, modify settings, send message,
authenticate), t is the target, c is the surrounding context, and r €
{0, 1,2, 3,4} is the ground-truth risk level from SAFE to CRITICAL.

2.2 Task Scenarios

A task scenario S = (sy, ..., Sp) is a sequence of actions representing
a complete user-delegated task. Each scenario has a task type (web
search, form fill, purchase, data extraction, account management,
communication) and operates in a domain d with risk multiplier
g that adjusts the probability of high-risk actions.

2.3 DPolicy Levels
We define three enforcement levels:

e Syntactic: Pattern-matching rules with false positive rates 0.12-
0.30 and false negative rates 0.10-0.22.

e Semantic: Meaning-aware classification with false positive rates
0.03-0.12 and false negative rates 0.06-0.12.

o Contextual: Full context reasoning with look-ahead, achieving
false positive rates 0.01-0.05 and false negative rates 0.02-0.08,
with dedicated prompt injection detection.

3 METHODOLOGY

3.1 Simulation Framework

We simulate CUA task execution using a Monte Carlo framework.
For each trial, we generate N task scenarios by sampling action
types from task-specific distributions, assigning risk levels accord-
ing to action profiles adjusted by domain multipliers, and optionally
injecting adversarial actions at random steps.

3.2 Policy Enforcement

Each action is evaluated against the active policy rules. A rule fires
when the action type matches and the risk level meets the threshold.
The enforcement decision incorporates calibrated noise through
false positive and false negative rates. Deceptive (injected) actions
receive a detection penalty for non-contextual policies, simulating
their inability to reason about multi-step intent.

3.3 Evaluation Metrics

We measure: (1) Safety recall—fraction of risky actions blocked; (2)
Safety precision—fraction of blocked actions that were truly risky;
(3) F1 score—harmonic mean of precision and recall; (4) Utility score—
fraction of task-necessary actions allowed; (5) Injection detection
rate—fraction of injection attacks caught; (6) Task completion rate—
fraction of tasks with all necessary actions allowed.

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

1

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

Table 1: Policy comparison across 30 trials of 2,000 tasks.
Values are mean + standard deviation.

Metric None Syntactic Semantic Contextual
Safety Recall ~ 0.000 0.444+0.007 0.560+0.005 0.947+0.003
Precision 0.000 0.977+0.003 1.000+0.000 1.000+0.000
F1 Score 0.000 0.611+0.006 0.718+0.005 0.973+0.002
FPR 0.000 0.005+0.001 0.000+0.000 0.000+0.000
Utility 1.000 0.860+0.003 0.830+0.004 0.721+0.003
Inj. Detect 0.000 0.197+0.016 0.306+0.023 0.940+0.011
Task Compl. 1.000 0.451+0.012 0.358+0.011 0.206+0.008

4 RESULTS

4.1 Main Experiment

Table 1 presents results aggregated over 30 trials of 2,000 tasks each.
Contextual policies achieve the highest F1 score (0.973) with 94.7%
safety recall and perfect precision (1.000). Semantic policies achieve
moderate performance (F1 = 0.718), while syntactic policies suffer
from limited coverage (F1 = 0.611). The no-policy baseline allows
all actions (utility = 1.0) but provides zero safety.

4.2 Pareto Frontier Analysis

All four policy levels lie on the safety—utility Pareto frontier, indicat-
ing that each represents a distinct trade-off. The no-policy baseline
maximizes utility at zero safety, while contextual policies maximize
safety at reduced but still substantial utility (72.1%). Importantly,
contextual policies dominate semantic and syntactic alternatives in
F1, making them the preferred choice when injection resistance is
prioritized.

4.3 Domain Analysis

Domain risk multipliers range from 0.7 (general browsing) to 1.8
(banking). High-risk domains show the largest improvement from
contextual policies: in banking, contextual policies achieve 94.8%
safety recall versus 42.4% for syntactic, while maintaining 62.8%
utility. Lower-risk domains like general browsing show a smaller
gap (94.8% vs. 47.6%) but higher baseline utility for all policy levels.

4.4 Scalability Analysis

As task length increases from 3 to 50 actions, the advantage of con-
textual policies grows. For 50-action tasks, contextual F1 remains
above 0.97, while syntactic F1 degrades to approximately 0.59. This
confirms that context-aware reasoning is especially valuable for
complex, multi-step tasks.

4.5 Injection Robustness

Across injection rates from 0% to 70%, contextual policies main-
tain detection rates above 93%, while syntactic policies plateau at
approximately 20%. Semantic policies achieve intermediate perfor-
mance, reaching 30% detection at the highest injection rates. These
results validate the importance of dedicated injection detection in
contextual policy frameworks.

Anon.

5 DISCUSSION

Our experiments reveal a fundamental tension in CUA security:
more effective policies reduce task completion rates. Contextual poli-
cies achieve the best safety (F1 = 0.973) but complete only 20.6% of
tasks without blocking any necessary action, compared to 45.1%
for syntactic policies. This suggests that real-world deployment
requires mechanisms for user-in-the-loop review of flagged actions
rather than hard blocking.

The perfect precision (1.000) of both semantic and contextual
policies—meaning they never incorrectly block safe actions—is
an artifact of our simulation’s rule structure, where false positive
rates are modeled as independent probabilities per rule. In practice,
correlated false positives may arise from ambiguous contexts.

Two key infrastructure requirements emerge: (1) planner-provided
intent annotations that attach high-level purpose to each low-level
action, enabling policies to reason about whether a click serves nav-
igation, authentication, or data submission; and (2) website-provided
metadata that declares permissible action patterns, analogous to
robots.txt for crawlers but for CUA agents.

6 RELATED WORK

Information-flow control has a long history in security research [1,
5]. The Dual-LLM architecture [2] introduced control-flow isolation
for CUA agents but left data-flow policies as an open problem.
Prompt injection attacks [3] pose a particular threat to CUA systems
where adversarial content is embedded in webpages. Tool emulation
environments [4] and real-world OS benchmarks [6] have evaluated
agent capabilities but not security policy enforcement. Our work
bridges this gap by providing a formal framework and empirical
evaluation of semantic policy levels for CUA tool invocations.

7 CONCLUSION

We presented a formal framework for semantic policy enforce-
ment in Computer Use Agents, demonstrating through extensive
simulation that contextual policies with look-ahead reasoning sub-
stantially outperform syntactic and semantic alternatives across
all safety metrics while maintaining reasonable task utility. Our
results quantify the safety—utility trade-off across 8 application
domains and identify planner-provided intent annotations and
website-provided metadata as essential infrastructure for practi-
cal CUA security. Future work should validate these findings with
real CUA systems and develop adaptive policies that learn from
deployment experience.

REFERENCES

[1] Dorothy E Denning. 1976. A lattice model of secure information flow. Commun.

ACM 19, 5 (1976), 236-243.

Jacob Foerster et al. 2026. CaMeLs Can Use Computers Too: System-level Security

for Computer Use Agents. In arXiv preprint arXiv:2601.09923.

[3] Kai Greshake et al. 2023. Not what you’ve signed up for: Compromising real-
world LLM-integrated applications with indirect prompt injection. arXiv preprint
arXiv:2302.12173 (2023).

[4] Yangjun Ruan et al. 2024. ToolEmu: Identifying the risks of LM agents with an
emulated tool execution environment. arXiv preprint arXiv:2309.15817 (2024).

[5] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. In IEEE Journal on Selected Areas in Communications, Vol. 21. 5-19.

[6] Tianbao Wu et al. 2024. OSWorld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. arXiv preprint arXiv:2404.07972
(2024).

[2

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 CUA Tool Actions
	2.2 Task Scenarios
	2.3 Policy Levels

	3 Methodology
	3.1 Simulation Framework
	3.2 Policy Enforcement
	3.3 Evaluation Metrics

	4 Results
	4.1 Main Experiment
	4.2 Pareto Frontier Analysis
	4.3 Domain Analysis
	4.4 Scalability Analysis
	4.5 Injection Robustness

	5 Discussion
	6 Related Work
	7 Conclusion
	References

