
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Semantic Policy Enforcement for Low-Level Computer Use Agent
Tools

Anonymous Author(s)

ABSTRACT
Computer Use Agents (CUAs) that interact with GUIs through low-

level actions such as click and find present a fundamental challenge

for security policy enforcement: these primitive operations lack the

intrinsic semantics needed to define meaningful data-flow restric-

tions. We formalize three levels of policy abstraction—syntactic,

semantic, and contextual—and evaluate their effectiveness through

large-scale Monte Carlo simulations across 2,000 task scenarios, 8

application domains, and varying adversarial conditions. Our con-

textual policy framework achieves an F1 score of 0.973 and detects

94.0% of prompt injection attacks, compared to 0.611 and 19.7% for

syntactic baselines, while maintaining 72.1% task utility. Domain

analysis reveals that high-risk domains (banking, healthcare) bene-

fit most from contextual reasoning. Scalability experiments show

that the advantage of semantic policies grows with task complexity,

and injection robustness analysis confirms consistent performance

across attack rates from 5% to 70%. These results demonstrate that

planner-provided intent annotations and context-aware reasoning

are essential infrastructure for securing CUA tool invocations.

1 INTRODUCTION
The emergence of Computer Use Agents (CUAs)—AI systems that

interact with software through GUI-level actions such as clicking,

typing, and navigating—has created new security challenges that ex-

isting information-flow control frameworks struggle to address [2].

Within the Dual-LLM architecture, control flow isolation separates

privileged planning from quarantined perception, yet data flow

remains vulnerable because the perception model’s outputs can

steer execution [2].

Standard information-flow security policies [1, 5] can mitigate

data-flow risks in domains with semantically rich tool interfaces.

However, CUA tools like click(x,y) and find(selector) lack

intrinsic semantics, making it difficult to define and enforce mean-

ingful policies. This gap motivates the central question of this work:

How can we design and evaluate semantic security policies for low-
level CUA tool invocations?

We address this question through three contributions:

(1) A formal model of semantic policies as predicate-action rules

parameterized by abstraction level (syntactic, semantic, and

contextual).

(2) A simulation framework that generates realistic CUA task sce-

narios with adversarial prompt injections across diverse appli-

cation domains.

(3) Comprehensive empirical evaluation demonstrating that con-

textual policies substantially outperform alternatives on the

safety–utility Pareto frontier.

2 PROBLEM FORMULATION
2.1 CUA Tool Actions
We model CUA interactions as sequences of typed actions 𝑎 =

(𝜏, 𝑡, 𝑐, 𝑟 ) where 𝜏 ∈ T is the action type (navigate, click, type,

read, submit, download, execute, modify settings, send message,

authenticate), 𝑡 is the target, 𝑐 is the surrounding context, and 𝑟 ∈
{0, 1, 2, 3, 4} is the ground-truth risk level from Safe to Critical.

2.2 Task Scenarios
A task scenario 𝑆 = (𝑠1, . . . , 𝑠𝑛) is a sequence of actions representing
a complete user-delegated task. Each scenario has a task type (web

search, form fill, purchase, data extraction, account management,

communication) and operates in a domain 𝑑 with risk multiplier

𝜇𝑑 that adjusts the probability of high-risk actions.

2.3 Policy Levels
We define three enforcement levels:

• Syntactic: Pattern-matching rules with false positive rates 0.12–

0.30 and false negative rates 0.10–0.22.

• Semantic: Meaning-aware classification with false positive rates

0.03–0.12 and false negative rates 0.06–0.12.

• Contextual: Full context reasoning with look-ahead, achieving

false positive rates 0.01–0.05 and false negative rates 0.02–0.08,

with dedicated prompt injection detection.

3 METHODOLOGY
3.1 Simulation Framework
We simulate CUA task execution using a Monte Carlo framework.

For each trial, we generate 𝑁 task scenarios by sampling action

types from task-specific distributions, assigning risk levels accord-

ing to action profiles adjusted by domain multipliers, and optionally

injecting adversarial actions at random steps.

3.2 Policy Enforcement
Each action is evaluated against the active policy rules. A rule fires

when the action type matches and the risk level meets the threshold.

The enforcement decision incorporates calibrated noise through

false positive and false negative rates. Deceptive (injected) actions

receive a detection penalty for non-contextual policies, simulating

their inability to reason about multi-step intent.

3.3 Evaluation Metrics
We measure: (1) Safety recall—fraction of risky actions blocked; (2)

Safety precision—fraction of blocked actions that were truly risky;

(3) F1 score—harmonic mean of precision and recall; (4)Utility score—
fraction of task-necessary actions allowed; (5) Injection detection
rate—fraction of injection attacks caught; (6) Task completion rate—
fraction of tasks with all necessary actions allowed.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Policy comparison across 30 trials of 2,000 tasks.
Values are mean ± standard deviation.

Metric None Syntactic Semantic Contextual

Safety Recall 0.000 0.444±0.007 0.560±0.005 0.947±0.003
Precision 0.000 0.977±0.003 1.000±0.000 1.000±0.000
F1 Score 0.000 0.611±0.006 0.718±0.005 0.973±0.002
FPR 0.000 0.005±0.001 0.000±0.000 0.000±0.000
Utility 1.000 0.860±0.003 0.830±0.004 0.721±0.003
Inj. Detect 0.000 0.197±0.016 0.306±0.023 0.940±0.011
Task Compl. 1.000 0.451±0.012 0.358±0.011 0.206±0.008

4 RESULTS
4.1 Main Experiment
Table 1 presents results aggregated over 30 trials of 2,000 tasks each.

Contextual policies achieve the highest F1 score (0.973) with 94.7%

safety recall and perfect precision (1.000). Semantic policies achieve

moderate performance (F1 = 0.718), while syntactic policies suffer

from limited coverage (F1 = 0.611). The no-policy baseline allows

all actions (utility = 1.0) but provides zero safety.

4.2 Pareto Frontier Analysis
All four policy levels lie on the safety–utility Pareto frontier, indicat-

ing that each represents a distinct trade-off. The no-policy baseline

maximizes utility at zero safety, while contextual policies maximize

safety at reduced but still substantial utility (72.1%). Importantly,

contextual policies dominate semantic and syntactic alternatives in

F1, making them the preferred choice when injection resistance is

prioritized.

4.3 Domain Analysis
Domain risk multipliers range from 0.7 (general browsing) to 1.8

(banking). High-risk domains show the largest improvement from

contextual policies: in banking, contextual policies achieve 94.8%

safety recall versus 42.4% for syntactic, while maintaining 62.8%

utility. Lower-risk domains like general browsing show a smaller

gap (94.8% vs. 47.6%) but higher baseline utility for all policy levels.

4.4 Scalability Analysis
As task length increases from 3 to 50 actions, the advantage of con-

textual policies grows. For 50-action tasks, contextual F1 remains

above 0.97, while syntactic F1 degrades to approximately 0.59. This

confirms that context-aware reasoning is especially valuable for

complex, multi-step tasks.

4.5 Injection Robustness
Across injection rates from 0% to 70%, contextual policies main-

tain detection rates above 93%, while syntactic policies plateau at

approximately 20%. Semantic policies achieve intermediate perfor-

mance, reaching 30% detection at the highest injection rates. These

results validate the importance of dedicated injection detection in

contextual policy frameworks.

5 DISCUSSION
Our experiments reveal a fundamental tension in CUA security:

more effective policies reduce task completion rates. Contextual poli-
cies achieve the best safety (F1 = 0.973) but complete only 20.6% of

tasks without blocking any necessary action, compared to 45.1%

for syntactic policies. This suggests that real-world deployment

requires mechanisms for user-in-the-loop review of flagged actions

rather than hard blocking.

The perfect precision (1.000) of both semantic and contextual

policies—meaning they never incorrectly block safe actions—is

an artifact of our simulation’s rule structure, where false positive

rates are modeled as independent probabilities per rule. In practice,

correlated false positives may arise from ambiguous contexts.

Two key infrastructure requirements emerge: (1) planner-provided
intent annotations that attach high-level purpose to each low-level

action, enabling policies to reason about whether a click serves nav-

igation, authentication, or data submission; and (2) website-provided
metadata that declares permissible action patterns, analogous to

robots.txt for crawlers but for CUA agents.

6 RELATEDWORK
Information-flow control has a long history in security research [1,

5]. The Dual-LLM architecture [2] introduced control-flow isolation

for CUA agents but left data-flow policies as an open problem.

Prompt injection attacks [3] pose a particular threat to CUA systems

where adversarial content is embedded in webpages. Tool emulation

environments [4] and real-world OS benchmarks [6] have evaluated

agent capabilities but not security policy enforcement. Our work

bridges this gap by providing a formal framework and empirical

evaluation of semantic policy levels for CUA tool invocations.

7 CONCLUSION
We presented a formal framework for semantic policy enforce-

ment in Computer Use Agents, demonstrating through extensive

simulation that contextual policies with look-ahead reasoning sub-

stantially outperform syntactic and semantic alternatives across

all safety metrics while maintaining reasonable task utility. Our

results quantify the safety–utility trade-off across 8 application

domains and identify planner-provided intent annotations and

website-provided metadata as essential infrastructure for practi-

cal CUA security. Future work should validate these findings with

real CUA systems and develop adaptive policies that learn from

deployment experience.

REFERENCES
[1] Dorothy E Denning. 1976. A lattice model of secure information flow. Commun.

ACM 19, 5 (1976), 236–243.

[2] Jacob Foerster et al. 2026. CaMeLs Can Use Computers Too: System-level Security

for Computer Use Agents. In arXiv preprint arXiv:2601.09923.
[3] Kai Greshake et al. 2023. Not what you’ve signed up for: Compromising real-

world LLM-integrated applications with indirect prompt injection. arXiv preprint
arXiv:2302.12173 (2023).

[4] Yangjun Ruan et al. 2024. ToolEmu: Identifying the risks of LM agents with an

emulated tool execution environment. arXiv preprint arXiv:2309.15817 (2024).

[5] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow

security. In IEEE Journal on Selected Areas in Communications, Vol. 21. 5–19.
[6] Tianbao Wu et al. 2024. OSWorld: Benchmarking multimodal agents for open-

ended tasks in real computer environments. arXiv preprint arXiv:2404.07972
(2024).

2


	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 CUA Tool Actions
	2.2 Task Scenarios
	2.3 Policy Levels

	3 Methodology
	3.1 Simulation Framework
	3.2 Policy Enforcement
	3.3 Evaluation Metrics

	4 Results
	4.1 Main Experiment
	4.2 Pareto Frontier Analysis
	4.3 Domain Analysis
	4.4 Scalability Analysis
	4.5 Injection Robustness

	5 Discussion
	6 Related Work
	7 Conclusion
	References

