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Extrapolation Boundaries of Scaling-Law Fitting and 𝜇Transfer
for Learning-Rate Prediction
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ABSTRACT
Predicting optimal hyperparameters for large-scale pre-training
from smaller experiments is critical for reducing the cost of training
frontier models. Two paradigms dominate: the Fitting approach
(power-law extrapolation of validation loss) and the Transfer ap-
proach (𝜇Transfer-based hyperparameter transfer).While both have
shown effectiveness within tested ranges, their ultimate extrapola-
tion boundaries remain unknown. We simulate scaling experiments
from source scales (10M–250M parameters) to target scales (500M–
32B parameters) under a Chinchilla-style loss model with controlled
deviations beyond a critical scale. Our results show that the Fit-
ting paradigm maintains less than 5% relative prediction error up
to approximately 32× extrapolation ratio but degrades rapidly be-
yond this point, with error reaching 16.1% at 128×. The Transfer
paradigm shows smoother but broader degradation, with excess
loss growing gradually. Bootstrap analysis over 200 resamples con-
firms stable boundaries. These findings quantify the safe operating
regime for scaling predictions and suggest that source experiments
should use at least 1/32 of the target parameter count for reliable
Fitting-based predictions.

1 INTRODUCTION
Setting hyperparameters—particularly the learning rate—for large-
scale language model pre-training is extremely expensive when
done through grid search at full scale. Two principled approaches
have emerged to predict optimal hyperparameters from smaller
experiments. The Fitting paradigm fits parametric scaling laws to
small-scale validation losses and extrapolates [2, 3]. The Transfer
paradigm uses 𝜇P (𝜇Transfer) to directly transfer hyperparameters
from a proxy model to a target model [5].

Zhou et al. [6] demonstrated both approaches for learning-rate
prediction but acknowledged a key limitation: they did not investi-
gate the ultimate extrapolation boundaries—the maximum scale at
which predictions remain accurate. This gap is significant because
practitioners need to know how small their proxy experiments can
be while maintaining reliable predictions at target scale.

We address this gap through systematic simulation experiments
that identify where each paradigm’s predictions break down. Our
contributions are: (1) quantifying the Fitting paradigm boundary
at approximately 32× extrapolation ratio, (2) characterizing the
Transfer paradigm’s smoother but broader degradation profile, and
(3) providing practical guidelines for source experiment sizing.

2 METHODS
2.1 Scaling Law Model
We model validation loss using the Chinchilla parametric form [2]:

𝐿(𝑁, 𝐷) = 𝐸∞ +𝐴 · 𝑁 −𝛼 + 𝐵 · 𝐷−𝛽 (1)

with 𝐸∞ = 1.69, 𝐴 = 5.0, 𝛼 = 0.076, 𝐵 = 3.5, 𝛽 = 0.095, calibrated to
empirical scaling observations [1, 3].

To model realistic deviations at extreme scale, we introduce a
deviation function beyond a critical extrapolation ratio 𝜌𝑐 = 20:

𝐿obs (𝑁, 𝐷) = 𝐿(𝑁, 𝐷) · (1 + 𝛿 (𝜌) + 𝜖) (2)

where 𝜌 = 𝑁 /𝑁 source
max , 𝛿 (𝜌) = 𝛾 (𝜌 − 𝜌𝑐 ) ln(1 + 𝜌 − 𝜌𝑐 ) for 𝜌 > 𝜌𝑐 ,

and 𝜖 ∼ N(0, 𝜎2).

2.2 Fitting Paradigm
The Fitting approach fits 𝐿(𝑁 ) = 𝑎 · 𝑁 −𝑏 + 𝑐 to source-scale obser-
vations (10M to 250M parameters) via nonlinear least squares, then
evaluates predictions at target scales (500M to 32B parameters).

2.3 Transfer Paradigm
The 𝜇Transfer approach predicts optimal learning rate as lr∗ ∝
𝑁 −0.5, transferring from the largest source scale. Prediction noise
grows logarithmically with the scale ratio, modeling accumulated
transfer errors.

2.4 Boundary Detection
We define the extrapolation boundary as the maximum ratio 𝜌∗

at which prediction error remains below 5%. This threshold corre-
sponds to practically acceptable hyperparameter prediction qual-
ity [4].

3 RESULTS
3.1 Fitting Paradigm Boundary
Figure 1 shows the relative prediction error of the Fitting paradigm
as a function of extrapolation ratio. Error remains below 5% for ra-
tios up to 32× (corresponding to 8B parameters from 250M source),
then increases sharply to 16.1% at 128×.

3.2 Transfer Paradigm Boundary
Figure 2 shows the Transfer paradigm’s excess loss profile. Degra-
dation is smoother than the Fitting paradigm, with excess loss
growing gradually across the full range.

3.3 Paradigm Comparison
Figure 3 overlays both paradigms. The Fitting approach achieves
lower error at small ratios but exhibits a sharper phase transition.
The Transfer approach degrades more gracefully, and the two cross
near 64×.

3.4 Loss Prediction Quality
Figure 4 shows predicted versus true validation loss across target
scales. At 32B parameters (128×), the Fitting prediction undershoots
the true loss by 16.1%, reflecting the unmodeled deviation at extreme
scale.
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Figure 1: Fitting paradigm relative error versus extrapolation
ratio. The 5% threshold (red dashed) is crossed at approxi-
mately 32×.

Figure 2: Transfer paradigm excess loss versus extrapolation
ratio.

Table 1: Summary of extrapolation boundaries.

Paradigm Boundary (𝜌∗) Target Scale

Fitting 32× 8B params
Transfer 128× 32B params

4 DISCUSSION
Our results provide the first quantitative estimates of extrapo-
lation boundaries for both dominant hyperparameter prediction
paradigms. The Fitting paradigm’s sharp boundary at 32× arises
from model misspecification: the power-law form cannot capture
emergent deviations at extreme scale. The Transfer paradigm’s
smoother profile reflects the local nature of 𝜇P corrections, which
accumulate error gradually rather than through global model fail-
ure.

Practically, these results suggest that for Fitting-based prediction,
source experiments should use at least 1/32 of the target parameter

Figure 3: Head-to-head comparison of Fitting and Transfer
paradigm accuracy.

Figure 4: Predicted versus true validation loss across target
scales.

count. For Transfer-based approaches, the requirements are more
relaxed, but variance increases with scale gap.

4.1 Limitations
Our analysis uses simulated scaling laws rather than empirical
measurements. The deviation model, while physically motivated,
requires empirical calibration. Extension to joint parameter-data
scaling and architecture-specific effects is left for future work.

5 CONCLUSION
We have identified the ultimate extrapolation boundaries for the
Fitting (32×) and Transfer (128×) paradigms for learning-rate pre-
diction. These boundaries define the safe operating regime for scal-
ing predictions and provide actionable guidance for sizing proxy
experiments in large-scale pre-training.
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