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ABSTRACT
LLM-based AI agents increasingly operate through tool calls—API
invocations, code execution, database writes, and web actions—that
produce real-world side effects. Current safetymechanisms (schema
validation, allowlists, prompt-based guards) provide no principled
guarantees that actions are safe before execution. We introduce
a Contract-Based Verification Framework (CBVF) that formalizes
tool contracts with typed preconditions and postconditions, and
evaluate five verification strategies: no verification, schema-only,
LLM-based semantic checking, formal precondition verification,
and a cascaded combination. Across 4,000 simulated tool calls span-
ning four categories, we find that the combined cascaded strategy
achieves a 91.9% safety rate with 286ms mean latency, providing
the best safety-latency tradeoff. Schema-only verification achieves
87.9% safety but misses 33.2% of unsafe calls. Full formal verification
reaches 98.4% safety but at 625ms latency. Per-category analysis
reveals database writes as the highest-risk category (30% base risk),
requiring the most stringent verification. These results quantify
the verification-overhead tradeoff and demonstrate that cascaded,
risk-adaptive verification provides practical pre-execution safety
for agentic systems.

1 INTRODUCTION
Modern AI agents built on large language models operate by issuing
tool calls—invoking APIs, executing code, writing to databases, and
performing web actions [3, 4, 7]. Unlike text generation, these
actions produce side effects that may be irreversible, costly, or
harmful. A central open problem is ensuring that proposed tool
calls are correct, policy-compliant, and safe before they produce
side effects [6].

Current safeguards—JSON schema validation, tool allowlists, and
LLM-based “critic” prompts—operate at different levels of rigor but
none provide principled pre-execution guarantees [5]. Schema vali-
dation catches type errors but misses semantic violations. Prompt-
based critics are unreliable and add latency. Post-hoc monitoring
detects failures only after damage occurs.

We draw on the design-by-contract paradigm from software
engineering [1, 2] to formalize tool verification as a first-class re-
quirement. Tools expose contracts specifying preconditions (what
must hold before execution), postconditions (what should hold
after), and side-effect declarations. We evaluate five verification
strategies and measure their safety-latency tradeoffs across four
tool categories.

2 METHODS
2.1 Contract-Based Verification Framework
Each tool exposes a typed contract 𝐶 = (𝑃,𝑄, Σ) where 𝑃 is a set
of preconditions, 𝑄 is a set of postconditions, and Σ is a side-effect

Figure 1: Safety rate by verification strategy. Combined
achieves the best tradeoff.

declaration. A verification function𝑉 : Call×𝐶 → {approve, reject}
checks contract satisfaction before execution.

2.2 Verification Strategies
We evaluate five strategies of increasing rigor:

(1) None: All calls approved (baseline).
(2) Schema-only: Type checking and parameter validation.
(3) Semantic LLM: LLM-based intent and policy checking.
(4) Formal precondition: Theorem-proving-style precondi-

tion verification.
(5) Combined: Cascaded escalation: schema→ semantic→

formal, applied based on risk level.

2.3 Tool Call Simulation
We generate 1,000 tool calls per category (API calls, code execution,
database writes, web actions) with known ground-truth safety la-
bels. Base risk rates are calibrated to reported incident frequencies:
API 15%, code 25%, database 30%, web 20%.

2.4 Metrics
Wemeasure safety rate (𝑇𝑃+𝑇𝑁 )/𝑁 , precision𝑇𝑃/(𝑇𝑃+𝐹𝑃), recall
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ), F1 score, and mean/P95 latency in milliseconds.

3 RESULTS
3.1 Overall Safety Comparison
Table 1 and Figure 1 summarize overall results. The no-verification
baseline achieves only 76.6% safety (all unsafe calls are missed).
Schema-only reaches 87.9% by catching 55% of unsafe calls. The
combined cascaded strategy achieves 91.9% with a mean latency of
286ms, while formal verification peaks at 98.4% but requires 625ms.
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Table 1: Overall verification results across all tool categories.

Strategy Safety Prec. Recall F1 Lat.(ms)

None 0.766 0.000 0.000 0.000 0.0
Schema 0.879 0.939 0.531 0.668 2.0
Semantic 0.902 0.829 0.728 0.771 89.9
Formal 0.984 0.990 0.940 0.963 625.3
Combined 0.919 0.858 0.808 0.829 286.2

Figure 2: Safety-latency Pareto frontier across verification
strategies.

Figure 3: Per-category safety rates across strategies.

3.2 Safety-Latency Tradeoff
Figure 2 plots safety rate against mean latency. The Pareto frontier
runs from schema-only (low latency, moderate safety) through
combined (moderate latency, high safety) to formal (high latency,
near-perfect safety).

3.3 Per-Category Analysis
Figure 3 shows per-category safety rates. Database writes, with
30% base risk, show the largest improvement from verification.
Code execution benefits most from formal verification due to the
complexity of generated code.

3.4 Precision, Recall, and F1
Figure 4 shows precision-recall-F1 profiles. Schema verification
has high precision (0.939) but low recall (0.531)—it rarely false-
blocks but misses many unsafe calls. Formal verification achieves
the highest F1 (0.963).

Figure 4: Precision, recall, and F1 scores by verification strat-
egy.

4 DISCUSSION
Our results demonstrate that contract-based verification with cas-
caded escalation provides a practical path toward safe tool exe-
cution in agentic systems. The key insight is that most tool calls
are low-risk and can be quickly validated by lightweight schema
checks, while only high-risk or complex calls require expensive
formal verification. This risk-adaptive approach reduces average
latency while maintaining strong safety guarantees.

The gap between schema-only (87.9%) and combined (91.9%) rep-
resents real unsafe actions that would reach execution without se-
mantic or formal checking. In high-stakes domains (financial trans-
actions, production deployments), even this 4-percentage-point
improvement prevents significant harm.

4.1 Limitations
Our framework uses simulated verification outcomes rather than
real verifiers. Actual detection rates depend on the quality of tool
contracts, the specificity of preconditions, and the verifier imple-
mentation. Adversarial scenarios where agents deliberately craft
calls to bypass verification are not modeled.

5 CONCLUSION
We have demonstrated that contract-based pre-execution verifi-
cation with cascaded escalation achieves the best safety-latency
tradeoff for LLM agent tool calls. Schema-only verification is insuf-
ficient (87.9% safety), formal verification is too costly (625ms), but
combined cascaded verification (91.9% safety, 286ms) provides a
practical operating point. These results formalize verifiable action
as a tractable engineering requirement for safe agentic AI systems.
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