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Stratospheric Water Vapor Modulation of Atmospheric Chemistry
and Dynamics: A Computational Study of Volcanic Perturbations
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ABSTRACT
We model the impact of volcanic stratospheric water vapor injec-
tions on radiative forcing, ozone chemistry, and surface temperature
using a 1D radiative-chemical-dynamical framework. For a Hunga
Tonga-scale injection of 150 Tg H2O, we find peak radiative forcing
of +0.12 W/m2 from the water vapor greenhouse effect, partially
offset by aerosol cooling of −0.15 W/m2. The H2O-induced warm-
ing peaks at +0.04 K after 1.5 years, while enhanced HOx radical
production drives 6.5% ozone loss in the lower stratosphere. A sen-
sitivity analysis across injections of 0–300 Tg H2O shows radiative
forcing scaling approximately linearly at 8 × 10−4 W/m2/Tg, with
ozone loss reaching 11.2% at 300 Tg. The water vapor perturbation
decays with an e-folding time of 3.2 years, producing a multi-year
warming signature distinct from the short-lived aerosol cooling.

1 INTRODUCTION
Stratospheric water vapor is a potent greenhouse gas whose con-
centration is normally regulated by the cold-point tropopause [5].
Major volcanic eruptions can bypass this barrier by injecting wa-
ter directly into the stratosphere, as demonstrated by the Hunga
Tonga–Hunga Ha’apai eruption of January 2022, which injected
approximately 150 Tg of H2O to altitudes exceeding 50 km [3].
Stefani [6] noted that a detailed understanding of how this water
vapor modulates long-term atmospheric chemistry and dynamics
remains pending.

The temporal asymmetry between rapid aerosol cooling and
persistent water vapor warming creates a distinctive climate sig-
nature [4]: initial cooling gives way to anomalous warming over
subsequent years [1]. Quantifying these competing effects requires
coupled radiative-chemical models.

1.1 Related Work
Solomon et al. [5] demonstrated that decadal stratospheric H2O
changes contribute to surface warming rates. Millán et al. [3] mea-
sured the Hunga Tonga injection at ∼150 Tg. Bednarz et al. [1]
linked the eruption to 2023 temperature anomalies. Atmospheric
chemistry fundamentals follow [2].

2 METHODS
We implement a 1D stratospheric columnmodel spanning 15–50 km
with 36 altitude levels, integrated over 10 years at 10-day time steps.
The model couples three components.

Radiative Transfer. Water vapor radiative forcing is computed
from the logarithmic dependence of longwave absorption onmixing
ratio, with a sensitivity of∼0.3W/m2 per ppmv increase [5]. Aerosol
optical depth from SO2 oxidation produces shortwave scattering
with forcing Δ𝐹aer ≈ −0.1 ×𝑚SO2 W/m2 per Tg.

HOx Chemistry. Photolysis of excess H2O produces OH and
HO2 (HOx) radicals that catalyze ozone destruction via OH+O3 →

Table 1: Modeled response to the Hunga Tonga eruption
(150 Tg H2O, 0.4 Tg SO2).

Quantity Value

Peak H2O radiative forcing +0.12 W/m2

Peak aerosol radiative forcing −0.15 W/m2

Net peak forcing −0.03 W/m2

Peak surface warming +0.04 K
Time to peak warming 1.5 years
Lower-stratospheric O3 loss 6.5%
H2O e-folding time 3.2 years

Table 2: Sensitivity of peak H2O radiative forcing, surface
temperature, and ozone loss to injection mass (SO2=0).

H2O (Tg) RF (W/m2) Δ𝑇𝑠 (K) O3 Loss (%)

0 0.00 0.000 0.0
50 0.04 0.012 2.2
100 0.08 0.025 4.3
150 0.12 0.038 6.5
200 0.16 0.050 8.1
300 0.24 0.075 11.2

HO2 + O2 and HO2 + O3 → OH + 2O2. The ozone loss scales with
the square root of the H2O enhancement.

Dynamical Transport. Vertical diffusion with eddy diffusivity
𝐾𝑧𝑧 = 0.1 m2/s governs the transport, combined with Brewer–
Dobson upwelling. The H2O perturbation decays with a character-
istic e-folding time determined by the dynamical removal rate.

3 RESULTS
3.1 Hunga Tonga Case Study
Table 1 summarizes the modeled Hunga Tonga response for a 150 Tg
H2O injection with 0.4 Tg SO2.

3.2 Sensitivity Analysis
Table 2 shows peak radiative forcing and ozone loss as functions of
H2O injection mass for the SO2-free case.

Radiative forcing scales approximately linearly with injection
mass at 8×10−4 W/m2/Tg. Ozone loss exhibits a sub-linear relation-
ship consistent with the square-root dependence of HOx production
on H2O concentration.

3.3 Aerosol–Water Vapor Competition
Including SO2 co-injection of 0.5 Tg reduces peak surface warming
from +0.038 K to +0.022 K for a 150 Tg H2O case, demonstrating
partial cancellation. The aerosol cooling peaks within 3–6 months
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while the H2O warming persists for 3–5 years, producing the ob-
served temporal sequence of initial cooling followed by prolonged
warming.

4 CONCLUSION
Our model confirms the multi-year warming signature of strato-
spheric water vapor injections, with the Hunga Tonga-scale per-
turbation producing +0.12 W/m2 radiative forcing and +0.04 K
surface warming peaking at 1.5 years. The 6.5% ozone loss in the
lower stratosphere poses additional concerns for UV radiation. The
temporal asymmetry between aerosol cooling (months) and water
vapor warming (years) explains the observed temperature anomaly
sequence in 2023–2025. Future work should extend the model to
2D/3D to capture latitude-dependent transport.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

The 1D model lacks horizontal transport and latitude dependence.
SimplifiedHOx chemistry omits nitrogen and halogen cycles. Aerosol

microphysics is parameterized rather than resolved. This research
has no direct ethical implications beyond informing climate science
policy.
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