
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Compute Sufficiency in Processing-in-Memory under DRAM
Process Constraints for LLM Inference

Anonymous Author(s)

ABSTRACT
Processing-in-Memory (PIM) architectures promise to alleviate
the memory bandwidth bottleneck in large language model (LLM)
inference by placing compute logic directly on the memory die.
However, fabricating logic in DRAM technology process nodes im-
poses severe constraints on power budgets, thermal envelopes, and
transistor density. We present a quantitative simulation framework
that evaluates PIM compute sufficiency across DRAM process nodes
(10–18 nm), power budgets (0.5–5.0W per die), LLM model sizes
(7B–70B parameters), and precision formats (FP16, INT8, INT4).
Our Monte Carlo analysis (200 trials per configuration) reveals that
PIM achieves a compute sufficiency ratio of only 0.0732 for a 7B-
parameter model and 0.0077 for a 70B model at 2W, indicating that
PIM provides roughly 7.3% and 0.8% of the required compute, re-
spectively. Even under aggressive assumptions—5W power budget,
the most advanced 10 nm DRAM node, and INT4 precision—PIM
attains a maximum sufficiency ratio of 0.1838, falling far short of
the 1.0 threshold. By contrast, Processing-Near-Memory (PNM)
with a separate logic die achieves a sufficiency ratio of 1.3993 for
7B models. These results provide the first systematic quantifica-
tion of the PIM compute gap for LLM inference and suggest that
PNM or hybrid architectures are necessary for memory-centric
LLM acceleration.
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under DRAM Process Constraints for LLM Inference. In Proceedings of
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1 INTRODUCTION
Large language model (LLM) inference imposes extreme demands
on both compute throughput and memory bandwidth. During au-
toregressive decoding, each generated token requires loading the
full model weights and accumulated key-value cache from memory,
making inference fundamentally memory-bandwidth-bound for
single-request serving [10]. This bottleneck has motivated architec-
tures that bring computation closer to data, including Processing-
in-Memory (PIM) and Processing-Near-Memory (PNM) [4, 9].

PIM integrates compute units directly onto the DRAM die, ex-
ploiting the high internal bandwidth between memory banks and
embedded logic. However, Ma et al. [8] observe that the sufficiency
of compute in PIM remains unclear given the limited power and
thermal budgets of DRAM process nodes. DRAM-process logic suf-
fers from approximately 15% of the transistor density of a logic
process, higher supply voltages, and thermal competition with
memory refresh operations that consume roughly 30% of the die
thermal budget [7].
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In this paper, we address this open question through a systematic
simulation study. We model PIM, PNM, and GPU architectures and
evaluate their ability to meet a target latency of 50ms per token
for LLM decode across model sizes from 7B to 70B parameters. Our
key contributions are:

(1) A parameterized architecturemodel capturingDRAM-process
constraints on PIM compute throughput, including power
limiting, thermal limiting with refresh overhead, and man-
ufacturing variability.

(2) A comprehensive sweep across process nodes (10–18 nm),
power budgets (0.5–5.0W), model sizes (7B–70B), and preci-
sion formats (FP16, INT8, INT4) with 200-trial Monte Carlo
analysis per configuration.

(3) Quantification of the compute sufficiency gap: PIM achieves
at most 18.4% of the required compute even under the most
favorable assumptions, while PNM exceeds the sufficiency
threshold for 7B models.

2 BACKGROUND AND RELATEDWORK
2.1 Processing-in-Memory Architectures
PIM architectures place compute units within memory banks on
the DRAM die [1, 2]. Samsung’s HBM-PIM [7] and UPMEM’s PIM-
DRAM [2] represent commercial realizations, integrating fixed-
function or programmable logic alongside memory arrays. The
primary advantage is access to the full internal bank bandwidth,
which can exceed 128GB/s aggregate across 16 banks, far surpassing
the external memory interface.

However, logic fabricated in DRAM technology faces fundamen-
tal limitations. DRAM processes optimize for capacitor density and
leakage control rather than logic performance, yielding transistor
densities approximately 15% of comparable logic nodes. Further-
more, the supply voltage for DRAM logic (∼1.1 V) is significantly
higher than advanced logic processes (∼0.7 V), resulting in a 2.47×
increase in dynamic power per operation due to the 𝑉 2 relation-
ship [4].

2.2 Processing-Near-Memory
PNM places compute logic on a separate die connected to the mem-
ory via through-silicon vias (TSVs) or an interposer [3, 6]. This
approach permits logic fabricated in advanced process nodes, inde-
pendent thermal domains, and higher clock frequencies (∼1GHz
vs. ∼300MHz for PIM). The tradeoff is reduced bandwidth between
compute and memory, typically limited to ∼128GB/s via TSV inter-
faces.

2.3 LLM Inference Workloads
LLM autoregressive decoding generates one token at a time, requir-
ing loading model weights and the KV cache for each token [10].
For a model with 𝐿 layers, hidden dimension 𝑑 , and sequence length
𝑠 , each token requires approximately 2 · 4 ·𝑑2 ·𝐿 FFN operations and

1
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2 · 𝑠 · 𝑑 · 𝐿 attention operations. The arithmetic intensity during de-
code is extremely low, making it bandwidth-bound on conventional
architectures [5].

3 METHODOLOGY
3.1 Architecture Models
We model three architecture classes with the following key param-
eters:

PIM.. Compute units are embedded in each of 16 DRAM banks,
with 64 ALUs per bank operating at 300MHz. The effective opera-
tions per unit per cycle is 0.5 × (16/𝑛)0.3, where 𝑛 is the process
node in nm, reflecting the reduced logic efficiency of DRAM pro-
cesses. Power consumption follows 𝑃 = 𝛼𝐶𝑉 2 𝑓 with a voltage ratio
of 1.1/0.7 = 1.57 relative to logic processes. The thermal budget
accounts for 30% refresh overhead.

PNM.. A separate logic die with 32 compute units per bank,
running at 1 GHzwith full logic-process efficiency (2 ops/unit/cycle).
The PNM die has twice the power budget of PIM (separate thermal
domain) and no refresh overhead. Inter-die bandwidth is limited to
128GB/s.

GPU baseline. An A100-class accelerator with 624 TOPS (INT8),
2 TB/s HBM bandwidth, and 400W TDP, representing the conven-
tional compute-centric approach.

3.2 LLMWorkload Models
We model four LLM configurations following standard architec-
tures:

• 7B: 𝑑 = 4096, 𝐿 = 32, 32 attention heads
• 13B: 𝑑 = 5120, 𝐿 = 40, 40 attention heads
• 30B: 𝑑 = 6656, 𝐿 = 60, 52 attention heads
• 70B: 𝑑 = 8192, 𝐿 = 80, 64 attention heads

All models use sequence length 𝑠 = 2048 and batch size 1. The
target latency is 50ms per token for interactive serving.

3.3 Compute Sufficiency Ratio
We define the compute sufficiency ratio 𝜎 as:

𝜎 =
𝑡target

𝑡actual
(1)

where 𝑡target = 50ms and 𝑡actual = max(𝑡compute, 𝑡memory). An ar-
chitecture is compute-sufficient when 𝜎 ≥ 1.0. Values below 1.0
indicate the factor by which compute must be improved.

3.4 Monte Carlo Analysis
Each configuration is evaluated over 200 Monte Carlo trials incor-
porating manufacturing variability (5% standard deviation for PIM,
3% for PNM, 2% for GPU) to capture realistic performance distribu-
tions. We report means, standard deviations, and min/max across
trials.

Table 1: Architecture comparison: throughput, latency, suf-
ficiency ratio, and energy efficiency for LLM decode. Suffi-
ciency ratio 𝜎 ≥ 1.0 indicates compute-sufficient operation.

Model Arch GOPS Lat. (ms) 𝜎 GOPS/W

7B
PIM 7.1 684.17 0.0732 5.06
PNM 200.1 35.73 1.3993 50.62
GPU 623149.8 2.29 21.8639 1557.87

13B
PIM 7.1 1307.88 0.0383 5.06
PNM 199.8 63.89 0.7826 50.55
GPU 624137.7 4.09 12.2283 1560.34

30B
PIM 7.1 3248.27 0.0154 5.06
PNM 199.4 142.75 0.3503 50.55
GPU 622807.9 9.14 5.473 1557.02

70B
PIM 7.0 6513.08 0.0077 5.06
PNM 200.0 315.38 0.1585 50.56
GPU 624451.2 20.18 2.4772 1561.13
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Figure 1: Architecture comparison for LLM decode: (a) com-
pute sufficiency ratio on log scale with threshold at 𝜎 = 1.0,
(b) token generation latency with 50ms target.

4 RESULTS
4.1 Architecture Comparison
Table 1 presents the core comparison across architectures andmodel
sizes at default settings (14 nm process, 2W PIM power budget,
INT8 precision).

PIM achieves only 7.1 GOPS at 2W, yielding a sufficiency ratio
of 0.0732 for 7B models—meaning it provides only 7.3% of the
compute required to meet the 50ms latency target. For 70B models,
the sufficiency ratio drops to 0.0077, indicating that PIMwould need
approximately 130× more compute throughput. Figure 1 visualizes
these results.

PNM achieves a sufficiency ratio of 1.3993 for 7B models, demon-
strating that near-memory processing with a logic die can meet
latency targets for smaller models. However, PNM falls below the
threshold for models larger than 13B (𝜎 = 0.7826). The GPU base-
line is compute-sufficient across all model sizes, with 𝜎 ranging
from 2.4772 (70B) to 21.8639 (7B).

4.2 Power Budget Sweep
Table 2 and Figure 2 show how PIM sufficiency varies with the
per-die power budget.
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Table 2: PIM compute sufficiency ratio across power budgets
and model sizes. All values are far below the 1.0 threshold.

Power 7B 13B 30B 70B

0.5W 0.0184 0.0096 0.0039 0.0019
1.0W 0.0365 0.0193 0.0077 0.0039
1.5W 0.0550 0.0288 0.0116 0.0058
2.0W 0.0730 0.0383 0.0156 0.0078
3.0W 0.1104 0.0579 0.0232 0.0117
5.0W 0.1838 0.0958 0.0387 0.0195
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Figure 2: Heatmap of PIM compute sufficiency ratio as a
function of power budget and model size. Even at 5.0W, the
maximum ratio is 0.1838.
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Figure 3: Impact of DRAM process node on PIM performance
for 7B model: (a) sufficiency ratio, (b) throughput in GOPS.

Even at 5.0W per die—which exceeds typical DRAM thermal
budgets—PIM achieves a maximum sufficiency ratio of only 0.1838
for 7B models. The relationship between power and sufficiency is
approximately linear, suggesting that reaching 𝜎 = 1.0 for a 7B
model would require approximately 27W per die, far exceeding
any feasible DRAM thermal envelope.

4.3 Process Node Scaling
Figure 3 shows how advancing DRAM process technology affects
PIM sufficiency for a 7B model.

Table 3: PIM sufficiency ratio by precision format and model
size (14 nm, 2W). Precision provides limited benefit because
PIM is power/thermal-limited.

Precision 7B 13B 30B 70B

FP16 0.0732 0.0384 0.0155 0.0078
INT8 0.0735 0.0381 0.0155 0.0077
INT4 0.0734 0.0382 0.0154 0.0078
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Figure 4: Impact of precision format on PIM sufficiency and
energy efficiency.

Scaling from 18 nm to 10 nm improves the sufficiency ratio from
0.0568 to 0.1023 for INT8—an improvement of 1.80×, but still an
order of magnitude short of sufficiency. The throughput increases
from 5.5 to 9.9 GOPS. Precision format has minimal impact on
sufficiency because all configurations remain power- or thermally-
limited at these budgets, with FP16, INT8, and INT4 yielding nearly
identical sufficiency ratios at each node.

4.4 Precision Format Analysis
Table 3 presents the precision scaling results.

A notable finding is that reduced precision provides almost no
benefit for PIM compute sufficiency. While lower precision enables
more operations per compute unit, the PIM architecture remains
power- and thermally-limited at the 2W budget, meaning the addi-
tional theoretical throughput from INT4 vs. FP16 cannot be realized
within the power envelope.

4.5 The Compute Gap
Figure 5 quantifies the improvement factor PIM would need to
become compute-sufficient.

For a 7B model, PIM requires a 13.7× improvement in compute
throughput within the same power envelope. For 70B models, the
gap widens to approximately 130×. These gaps cannot be closed by
process scaling alone (which yields at most 1.8× from 18 to 10 nm)
or by precision reduction (which yields effectively no improvement
under power limits).

5 DISCUSSION
5.1 Implications for PIM Design
Our results confirm the concern raised by Ma et al. [8]: PIM fabri-
cated in DRAM process nodes cannot provide sufficient compute
for LLM inference under realistic power and thermal constraints.
The fundamental bottleneck is the power-limited throughput of

3
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Figure 5: Factor of improvement needed for PIM to reach
compute sufficiency (𝜎 = 1.0) at 2W, 14nm, INT8.

DRAM-process logic, which is constrained by high supply voltages
(1.1V vs. 0.7V), low transistor density (∼15% of logic processes),
and thermal competition with memory refresh (∼30% overhead).

5.2 PNM as a Viable Alternative
PNM achieves a sufficiency ratio of 1.3993 for 7B models by leverag-
ing a separate logic die with full logic-process capabilities. This val-
idates the architectural direction of systems such as HBM-PIM [7]
and TensorDIMM [6], where compute is placed near, rather than
in, memory.

However, PNM also falls short for larger models (𝜎 = 0.1585
for 70B), suggesting that even near-memory architectures require
either multiple dies, higher power budgets, or model partitioning
across memory stacks for large-scale LLM inference.

5.3 Energy Efficiency Trade-off
Despite its compute insufficiency, PIM achieves an energy effi-
ciency of 5.06GOPS/W, which is competitive for low-power ap-
plications. PNM reaches 50.62GOPS/W, while the GPU achieves
1557.87 GOPS/W at 400W. The energy efficiency gap between PIM
and PNM (∼10×) further underscores the advantage of separating
compute from memory fabrication.

5.4 Limitations
Our model makes several simplifying assumptions: uniform bank
utilization, single-die operation, and idealized memory access pat-
terns. Real PIM systems may face additional overheads from bank
conflicts, data layout mismatches, and control logic. We also do not
model the potential for multi-die PIM aggregation or heterogeneous
PIM/PNM configurations. Future work should incorporate these
effects and validate against silicon measurements from commercial
PIM products [2, 7].

6 CONCLUSION
We present the first systematic quantification of compute suffi-
ciency in Processing-in-Memory architectures under DRAM pro-
cess constraints for LLM inference. Our simulation framework
sweeps across process nodes, power budgets, model sizes, and

precision formats with Monte Carlo analysis. The results demon-
strate that PIM achieves at most 18.4% of the required compute
(sufficiency ratio 0.1838 at 5W for 7B models) and as little as 0.8%
for 70B models at typical 2W budgets (sufficiency ratio 0.0077).
Processing-Near-Memory with a separate logic die achieves suffi-
ciency for 7B models (ratio 1.3993) but not for larger models. These
findings provide concrete evidence that PIM alone is insufficient for
LLM inference and motivate further research into hybrid memory-
centric architectures, PNM designs, and co-optimization of model
compression with hardware capabilities.
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