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Compute Sufficiency in Processing-in-Memory under DRAM
Process Constraints for LLM Inference

Anonymous Author(s)

ABSTRACT

Processing-in-Memory (PIM) architectures promise to alleviate
the memory bandwidth bottleneck in large language model (LLM)
inference by placing compute logic directly on the memory die.
However, fabricating logic in DRAM technology process nodes im-
poses severe constraints on power budgets, thermal envelopes, and
transistor density. We present a quantitative simulation framework
that evaluates PIM compute sufficiency across DRAM process nodes
(10-18 nm), power budgets (0.5-5.0 W per die), LLM model sizes
(7B-70B parameters), and precision formats (FP16, INT8, INT4).
Our Monte Carlo analysis (200 trials per configuration) reveals that
PIM achieves a compute sufficiency ratio of only 0.0732 for a 7B-
parameter model and 0.0077 for a 70B model at 2 W, indicating that
PIM provides roughly 7.3% and 0.8% of the required compute, re-
spectively. Even under aggressive assumptions—5 W power budget,
the most advanced 10 nm DRAM node, and INT4 precision—PIM
attains a maximum sufficiency ratio of 0.1838, falling far short of
the 1.0 threshold. By contrast, Processing-Near-Memory (PNM)
with a separate logic die achieves a sufficiency ratio of 1.3993 for
7B models. These results provide the first systematic quantifica-
tion of the PIM compute gap for LLM inference and suggest that
PNM or hybrid architectures are necessary for memory-centric
LLM acceleration.
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1 INTRODUCTION

Large language model (LLM) inference imposes extreme demands
on both compute throughput and memory bandwidth. During au-
toregressive decoding, each generated token requires loading the
full model weights and accumulated key-value cache from memory,
making inference fundamentally memory-bandwidth-bound for
single-request serving [10]. This bottleneck has motivated architec-
tures that bring computation closer to data, including Processing-
in-Memory (PIM) and Processing-Near-Memory (PNM) [4, 9].

PIM integrates compute units directly onto the DRAM die, ex-
ploiting the high internal bandwidth between memory banks and
embedded logic. However, Ma et al. [8] observe that the sufficiency
of compute in PIM remains unclear given the limited power and
thermal budgets of DRAM process nodes. DRAM-process logic suf-
fers from approximately 15% of the transistor density of a logic
process, higher supply voltages, and thermal competition with
memory refresh operations that consume roughly 30% of the die
thermal budget [7].
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In this paper, we address this open question through a systematic
simulation study. We model PIM, PNM, and GPU architectures and
evaluate their ability to meet a target latency of 50 ms per token
for LLM decode across model sizes from 7B to 70B parameters. Our
key contributions are:

(1) A parameterized architecture model capturing DRAM-process
constraints on PIM compute throughput, including power
limiting, thermal limiting with refresh overhead, and man-
ufacturing variability.

(2) A comprehensive sweep across process nodes (10-18 nm),
power budgets (0.5-5.0 W), model sizes (7B-70B), and preci-
sion formats (FP16, INT8, INT4) with 200-trial Monte Carlo
analysis per configuration.

(3) Quantification of the compute sufficiency gap: PIM achieves
at most 18.4% of the required compute even under the most
favorable assumptions, while PNM exceeds the sufficiency
threshold for 7B models.

2 BACKGROUND AND RELATED WORK

2.1 Processing-in-Memory Architectures

PIM architectures place compute units within memory banks on
the DRAM die [1, 2]. Samsung’s HBM-PIM [7] and UPMEM’s PIM-
DRAM [2] represent commercial realizations, integrating fixed-
function or programmable logic alongside memory arrays. The
primary advantage is access to the full internal bank bandwidth,
which can exceed 128 GB/s aggregate across 16 banks, far surpassing
the external memory interface.

However, logic fabricated in DRAM technology faces fundamen-
tal limitations. DRAM processes optimize for capacitor density and
leakage control rather than logic performance, yielding transistor
densities approximately 15% of comparable logic nodes. Further-
more, the supply voltage for DRAM logic (~1.1V) is significantly
higher than advanced logic processes (~0.7 V), resulting in a 2.47X
increase in dynamic power per operation due to the V? relation-
ship [4].

2.2 Processing-Near-Memory

PNM places compute logic on a separate die connected to the mem-
ory via through-silicon vias (TSVs) or an interposer [3, 6]. This
approach permits logic fabricated in advanced process nodes, inde-
pendent thermal domains, and higher clock frequencies (~1 GHz
vs. ~300 MHz for PIM). The tradeoff is reduced bandwidth between
compute and memory, typically limited to ~128 GB/s via TSV inter-
faces.

2.3 LLM Inference Workloads

LLM autoregressive decoding generates one token at a time, requir-
ing loading model weights and the KV cache for each token [10].
For a model with L layers, hidden dimension d, and sequence length
s, each token requires approximately 2-4-d? - L FEN operations and

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

116


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Conference’17, July 2017, Washington, DC, USA

2-s-d - L attention operations. The arithmetic intensity during de-
code is extremely low, making it bandwidth-bound on conventional
architectures [5].

3 METHODOLOGY
3.1 Architecture Models

We model three architecture classes with the following key param-
eters:

PIM.. Compute units are embedded in each of 16 DRAM banks,
with 64 ALUs per bank operating at 300 MHz. The effective opera-
tions per unit per cycle is 0.5 x (16/n)°%3, where n is the process
node in nm, reflecting the reduced logic efficiency of DRAM pro-
cesses. Power consumption follows P = aCV?f with a voltage ratio
of 1.1/0.7 = 1.57 relative to logic processes. The thermal budget
accounts for 30% refresh overhead.

PNM.. A separate logic die with 32 compute units per bank,
running at 1 GHz with full logic-process efficiency (2 ops/unit/cycle).
The PNM die has twice the power budget of PIM (separate thermal
domain) and no refresh overhead. Inter-die bandwidth is limited to
128 GB/s.

GPU baseline. An A100-class accelerator with 624 TOPS (INT8),
2 TB/s HBM bandwidth, and 400 W TDP, representing the conven-
tional compute-centric approach.

3.2 LLM Workload Models

We model four LLM configurations following standard architec-
tures:

7B: d = 4096, L = 32, 32 attention heads

13B: d = 5120, L = 40, 40 attention heads
30B: d = 6656, L = 60, 52 attention heads
70B: d = 8192, L = 80, 64 attention heads

All models use sequence length s = 2048 and batch size 1. The
target latency is 50 ms per token for interactive serving.

3.3 Compute Sufficiency Ratio

We define the compute sufficiency ratio o as:

Ltarget
o= arge )

tactual

where ttarget = S0 ms and tycpual = maX(tcompute» tmemory)- An ar-
chitecture is compute-sufficient when ¢ > 1.0. Values below 1.0
indicate the factor by which compute must be improved.

3.4 Monte Carlo Analysis

Each configuration is evaluated over 200 Monte Carlo trials incor-
porating manufacturing variability (5% standard deviation for PIM,
3% for PNM, 2% for GPU) to capture realistic performance distribu-
tions. We report means, standard deviations, and min/max across
trials.

Anon.

Table 1: Architecture comparison: throughput, latency, suf-
ficiency ratio, and energy efficiency for LLM decode. Suffi-
ciency ratio o > 1.0 indicates compute-sufficient operation.

Model Arch GOPS  Lat. (ms) o GOPS/W
PIM 7.1 684.17 0.0732 5.06
7B PNM 200.1 35.73 1.3993 50.62
GPU  623149.8 2.29  21.8639 1557.87
PIM 7.1 1307.88 0.0383 5.06
13B PNM 199.8 63.89 0.7826 50.55
GPU  624137.7 4.09 12.2283 1560.34
PIM 7.1 3248.27 0.0154 5.06
30B PNM 199.4 142.75 0.3503 50.55
GPU  622807.9 9.14 5.473 1557.02
PIM 7.0 6513.08 0.0077 5.06
70B PNM 200.0 315.38 0.1585 50.56
GPU  624451.2 20.18 2.4772 1561.13

(a) Compute Sufficiency by Architecture (b) Token Generation Latency

== sufficiency threshold --- Target (50 ms)
- rM - P
- pNM - pNM
- GPU - GPU

PTCR AN DN S F——

Compute Sufficiency Ratio
Latency (ms/token)

78 138 308 708 78 138 308 708
Model Size Model Size

Figure 1: Architecture comparison for LLM decode: (a) com-
pute sufficiency ratio on log scale with threshold at o = 1.0,
(b) token generation latency with 50 ms target.

4 RESULTS

4.1 Architecture Comparison

Table 1 presents the core comparison across architectures and model
sizes at default settings (14 nm process, 2 W PIM power budget,
INTS precision).

PIM achieves only 7.1 GOPS at 2 W, yielding a sufficiency ratio
of 0.0732 for 7B models—meaning it provides only 7.3% of the
compute required to meet the 50 ms latency target. For 70B models,
the sufficiency ratio drops to 0.0077, indicating that PIM would need
approximately 130X more compute throughput. Figure 1 visualizes
these results.

PNM achieves a sufficiency ratio of 1.3993 for 7B models, demon-
strating that near-memory processing with a logic die can meet
latency targets for smaller models. However, PNM falls below the
threshold for models larger than 13B (o = 0.7826). The GPU base-
line is compute-sufficient across all model sizes, with ¢ ranging
from 2.4772 (70B) to 21.8639 (7B).

4.2 Power Budget Sweep

Table 2 and Figure 2 show how PIM sufficiency varies with the
per-die power budget.
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Table 2: PIM compute sufficiency ratio across power budgets
and model sizes. All values are far below the 1.0 threshold.

Power 7B 13B 30B 70B

0.5W  0.0184 0.0096 0.0039 0.0019
1.0W  0.0365 0.0193 0.0077 0.0039
1.5W  0.0550 0.0288 0.0116 0.0058
20W  0.0730 0.0383 0.0156 0.0078
3.0W  0.1104 0.0579 0.0232 0.0117
50W  0.1838 0.0958 0.0387 0.0195

PIM Compute Sufficiency Ratio
(Power Budget vs. Model Size)

0.200
0.5W
0.175
_ 10w - 0.150
o
© )
@ F0.125 2
215w 5
o] 9
) -0.100 &
E o
@ 2.0W &
5 L0.075 5
2 (2]
&
3.0W - 0.050
0.025
5.0W
0.000

13B 30B
Model Size

Figure 2: Heatmap of PIM compute sufficiency ratio as a
function of power budget and model size. Even at 5.0 W, the
maximum ratio is 0.1838.

(a) Sufficiency vs. Process Node (b) PIM Throughput vs. Process Node
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Figure 3: Impact of DRAM process node on PIM performance
for 7B model: (a) sufficiency ratio, (b) throughput in GOPS.

Even at 5.0 W per die—which exceeds typical DRAM thermal
budgets—PIM achieves a maximum sufficiency ratio of only 0.1838
for 7B models. The relationship between power and sufficiency is
approximately linear, suggesting that reaching ¢ = 1.0 for a 7B
model would require approximately 27 W per die, far exceeding
any feasible DRAM thermal envelope.

4.3 Process Node Scaling

Figure 3 shows how advancing DRAM process technology affects
PIM sufficiency for a 7B model.

Conference’17, July 2017, Washington, DC, USA

Table 3: PIM sufficiency ratio by precision format and model
size (14 nm, 2 W). Precision provides limited benefit because
PIM is power/thermal-limited.

Precision 7B 13B 30B 70B
FP16 0.0732  0.0384 0.0155 0.0078
INT8 0.0735 0.0381 0.0155 0.0077
INT4 0.0734 0.0382 0.0154 0.0078

(a) Sufficiency by Precision Format

(b) Energy Efficiency by Precision

Sufficiency Ratio
~

Energy Efficiency (GOPS/W)

78 138 308 708
Model Size Model Size

Figure 4: Impact of precision format on PIM sufficiency and
energy efficiency.

Scaling from 18 nm to 10 nm improves the sufficiency ratio from
0.0568 to 0.1023 for INT8—an improvement of 1.80X, but still an
order of magnitude short of sufficiency. The throughput increases
from 5.5 to 9.9 GOPS. Precision format has minimal impact on
sufficiency because all configurations remain power- or thermally-
limited at these budgets, with FP16, INT8, and INT4 yielding nearly
identical sufficiency ratios at each node.

4.4 Precision Format Analysis

Table 3 presents the precision scaling results.

A notable finding is that reduced precision provides almost no
benefit for PIM compute sufficiency. While lower precision enables
more operations per compute unit, the PIM architecture remains
power- and thermally-limited at the 2W budget, meaning the addi-
tional theoretical throughput from INT4 vs. FP16 cannot be realized
within the power envelope.

4.5 The Compute Gap

Figure 5 quantifies the improvement factor PIM would need to
become compute-sufficient.

For a 7B model, PIM requires a 13.7X improvement in compute
throughput within the same power envelope. For 70B models, the
gap widens to approximately 130x. These gaps cannot be closed by
process scaling alone (which yields at most 1.8X from 18 to 10 nm)
or by precision reduction (which yields effectively no improvement
under power limits).

5 DISCUSSION

5.1 Implications for PIM Design

Our results confirm the concern raised by Ma et al. [8]: PIM fabri-
cated in DRAM process nodes cannot provide sufficient compute
for LLM inference under realistic power and thermal constraints.
The fundamental bottleneck is the power-limited throughput of
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PIM Compute Gap: Factor of Improvement Nefw
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Figure 5: Factor of improvement needed for PIM to reach
compute sufficiency (o = 1.0) at 2 W, 14 nm, INTS.

DRAM-process logic, which is constrained by high supply voltages
(1.1V vs. 0.7V), low transistor density (~15% of logic processes),
and thermal competition with memory refresh (~30% overhead).

5.2 PNM as a Viable Alternative

PNM achieves a sufficiency ratio of 1.3993 for 7B models by leverag-
ing a separate logic die with full logic-process capabilities. This val-
idates the architectural direction of systems such as HBM-PIM [7]
and TensorDIMM [6], where compute is placed near, rather than
in, memory.

However, PNM also falls short for larger models (¢ = 0.1585
for 70B), suggesting that even near-memory architectures require
either multiple dies, higher power budgets, or model partitioning
across memory stacks for large-scale LLM inference.

5.3 Energy Efficiency Trade-off

Despite its compute insufficiency, PIM achieves an energy effi-
ciency of 5.06 GOPS/W, which is competitive for low-power ap-
plications. PNM reaches 50.62 GOPS/W, while the GPU achieves
1557.87 GOPS/W at 400 W. The energy efficiency gap between PIM
and PNM (~10x) further underscores the advantage of separating
compute from memory fabrication.

5.4 Limitations

Our model makes several simplifying assumptions: uniform bank
utilization, single-die operation, and idealized memory access pat-
terns. Real PIM systems may face additional overheads from bank
conflicts, data layout mismatches, and control logic. We also do not
model the potential for multi-die PIM aggregation or heterogeneous
PIM/PNM configurations. Future work should incorporate these
effects and validate against silicon measurements from commercial
PIM products [2, 7].

6 CONCLUSION

We present the first systematic quantification of compute suffi-
ciency in Processing-in-Memory architectures under DRAM pro-
cess constraints for LLM inference. Our simulation framework
sweeps across process nodes, power budgets, model sizes, and

Anon.

precision formats with Monte Carlo analysis. The results demon-
strate that PIM achieves at most 18.4% of the required compute
(sufficiency ratio 0.1838 at 5 W for 7B models) and as little as 0.8%
for 70B models at typical 2W budgets (sufficiency ratio 0.0077).
Processing-Near-Memory with a separate logic die achieves suffi-
ciency for 7B models (ratio 1.3993) but not for larger models. These
findings provide concrete evidence that PIM alone is insufficient for
LLM inference and motivate further research into hybrid memory-
centric architectures, PNM designs, and co-optimization of model
compression with hardware capabilities.
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