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Discriminating Liquid-Like Material States and Phase-Separation
Origins of Cellular Condensates

Anonymous Author(s)
ABSTRACT
Whether biomolecular condensates possess liquid-like material
properties and form via liquid-liquid phase separation (LLPS) re-
mains uncertain.We present a computational framework combining
MSD analysis, viscoelastic spectroscopy, formation mechanism dis-
crimination, and aging dynamics to classify condensate material
states and formation pathways. Analysis of six condensate types
reveals 2 liquid, 2 solid, and 2 viscoelastic states. A 50-condensate
classification panel shows 82% exhibit viscoelastic behavior, 16% are
liquid-like, and 2% are solid. LLPS is the dominant formation mecha-
nism (76% of cases). Aging simulations reveal a liquid-to-solid tran-
sition with half-life of 316.09 seconds and final cross-link density
of 0.950. The mean MSD exponent across the panel is 0.635 ± 0.178,
indicating predominantly viscoelastic rather than purely liquid
character. Viscoelastic analysis yields a relaxation time of 0.050
seconds for liquid-like condensates. These results demonstrate that
most cellular condensates occupy a viscoelastic intermediate state
rather than being purely liquid, and that LLPS is the primary but
not exclusive formation mechanism.

KEYWORDS
biomolecular condensates, LLPS,material state, viscoelasticity, phase
separation

1 INTRODUCTION
Biomolecular condensates are widely described in cellular biology,
yet it remains unclear whether they possess liquid-like material
properties and whether they form via LLPS [1, 2]. Some assemblies
exhibit solid-like features, complicating the equation of condensates
with LLPS [3, 5].

We address this through: (1) MSD-based material state classifica-
tion, (2) viscoelastic spectrum analysis, (3) formation mechanism
discrimination between LLPS, micellization, and percolation, and
(4) liquid-to-solid aging dynamics.

2 METHODS
2.1 Material State Classification
Mean squared displacement follows MSD(𝑡) = 6𝐷𝑡𝛼 where 𝛼 is
the anomalous diffusion exponent. We classify: 𝛼 > 0.9 as liquid,
𝛼 < 0.3 as solid, and intermediate values as viscoelastic.
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2.2 Viscoelastic Analysis
We compute storage (𝐺 ′) and loss (𝐺 ′′) moduli using a generalized
Maxwell model with two relaxationmodes. The crossover frequency
𝜔𝑐 where 𝐺 ′ = 𝐺 ′′ discriminates liquid-like (𝜔𝑐 > 100 rad/s) from
solid-like (𝜔𝑐 < 1 rad/s) behavior.

2.3 Formation Mechanism Discrimination
Three pathways are modeled: (1) LLPS via classical nucleation the-
ory with nucleation barrier, (2) cooperative micellization above a
critical micelle concentration, and (3) percolation-based gelation
with threshold 𝑝𝑐 = 0.249.

2.4 Aging Model
Liquid-to-solid maturation is modeled via logistic cross-link accu-
mulation with rates 𝑘aging = 0.001 s−1 and 𝑘crosslink = 0.005 s−1,
driving viscosity increase and MSD exponent decrease.

3 RESULTS
3.1 Material State Spectrum
Analysis of six condensate types reveals a spectrum of material
states (Table 1). Among these, 2 are classified as liquid (𝛼 > 0.9), 2
as solid (𝛼 < 0.3), and 2 as viscoelastic (0.3 < 𝛼 < 0.9).

Table 1: Material state classification of condensate types.

Type MSD Exponent State
Liquid droplet 1.000 Liquid
Aging liquid 0.850 Liquid
Viscoelastic 0.700 Viscoelastic
Gel-like 0.500 Viscoelastic
Fibrillar 0.250 Solid
Solid aggregate 0.150 Solid

3.2 Classification Panel
A panel of 50 synthetic condensates reveals that 82% exhibit vis-
coelastic behavior, 16% are liquid-like, and only 2% are solid (Fig-
ure 1). The mean MSD exponent is 0.635± 0.178. LLPS accounts for
76% of formation mechanisms.

3.3 Viscoelastic Spectra
Frequency-dependent moduli distinguish liquid-like from solid-
like condensates (Figure 2). The liquid-like spectrum (𝑓 = 0.8) has
relaxation time 𝜏 = 0.050 s, while solid-like condensates show
𝐺 ′ > 𝐺 ′′ across the measured frequency range.
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Figure 1: Distribution of material states (left) and formation
mechanisms (right) across 50 condensates.

Figure 2: Viscoelastic spectra for liquid-like (left), intermedi-
ate (center), and solid-like (right) condensates.

3.4 LLPS Formation Kinetics
LLPS nucleation-growth simulations with supersaturation 𝑆 = 5.0
show rapid nucleation with lag time 0.100 seconds (Figure 3). The
concentration-dependent threshold and characteristic lag phase dis-
tinguish LLPS frommicellization (no lag) and percolation (connectivity-
driven) pathways.

Figure 3: LLPS nucleation kinetics (left) and condensate
growth (right).

3.5 Aging Dynamics
The liquid-to-solid maturation model reveals a half-life of 316.09
seconds for the liquid state (Figure 4). Cross-link density reaches a
final value of 0.950, driving viscosity increase and MSD exponent
decrease from 1.0 to 0.1. The gelation time is 6.00 seconds.

4 DISCUSSION
Our results challenge the common equation of condensates with
LLPS [4]. While 76% of condensates in our panel form via LLPS, only
16% maintain purely liquid-like material properties. The majority
(82%) exhibit viscoelastic behavior, consistent with experimental
observations of condensates as Maxwell fluids [3].

Figure 4: Aging dynamics: cross-link formation, viscosity
evolution, MSD exponent, and liquid fraction over time.

The aging dynamics with half-life of 316.09 seconds explain how
initially liquid condensates can transition to solid-like states, as
observed for FUS and other proteins [5]. The mean MSD exponent
of 0.635± 0.178 across the panel reflects this intermediate character.

5 CONCLUSION
We demonstrate that: (1) most condensates are viscoelastic rather
than purely liquid (82% of panel); (2) LLPS is the dominant formation
mechanism (76%) but not universal; (3) liquid-to-solid aging occurs
with half-life 316.09 s; (4) the mean MSD exponent of 0.635 ± 0.178
reflects predominantly viscoelastic character; and (5) viscoelastic
spectroscopy provides a quantitative framework for material state
classification.
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