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Characterizing Polymer Conformational Distributions Within
Biomolecular Condensates: Surface vs. Bulk and In Vivo vs. In

Vitro
Anonymous Author(s)

ABSTRACT
The range of polymer conformations within biomolecular conden-
sates remains poorly characterized, particularly regarding differ-
ences between surface and bulk regions. We present a computa-
tional framework using worm-like chain simulations to charac-
terize conformational distributions within single-component con-
densates. Bulk polymers exhibit a mean radius of gyration 𝑅𝑔 =

1.905 ± 0.468 nm, while surface polymers are more extended with
𝑅𝑔 = 2.252 ± 0.563 nm (ratio 1.183, Cohen’s 𝑑 = 0.671, KS test
𝑝 < 10−10). Chain length scaling analysis yields an exponent
𝜈 = 0.509 (𝑅2 = 0.999), consistent with near-ideal chain behav-
ior. In vivo conformations are 5.48% more compact than in vitro
due to macromolecular crowding. Conformation strongly corre-
lates with material properties: 𝑅𝑔–viscosity correlation 𝑟 = 0.917
and 𝑅𝑔–diffusion correlation 𝑟 = −0.869. These results provide
a quantitative framework for understanding how condensate mi-
croenvironments shape polymer conformations and downstream
functional properties.

KEYWORDS
polymer conformations, biomolecular condensates, radius of gyra-
tion, phase separation, worm-like chain

1 INTRODUCTION
Biomolecular condensates formed by intrinsically disordered pro-
teins and nucleic acids are found throughout cells [1]. Even for
single-component condensates, the range of polymer conforma-
tions is generally unknown and may vary between the surface and
bulk [5, 7].

Characterizing conformational distributions is essential for un-
derstanding condensate structure, dynamics, and function [2, 6].
We address this by simulating polymer conformations using worm-
like chain models under conditions mimicking condensate bulk,
surface, in vitro, and in vivo environments.
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2 METHODS
2.1 Worm-Like Chain Model
Polymers aremodeled asworm-like chainswith𝑁 = 100monomers,
bond length𝑏 = 0.38 nm, and Kuhn length𝑏𝐾 = 0.76 nm. The persis-
tence length is 𝑙𝑝 = 𝑏𝐾/2 = 0.38 nm. Conformations are generated
by sampling tangent angle correlations:

⟨cos𝜃⟩ = exp(−𝑏/𝑙𝑝 ) (1)

2.2 Conformational Metrics
We compute: (1) end-to-end distance 𝑅𝑒𝑒 , (2) radius of gyration
𝑅𝑔 from the gyration tensor, (3) asphericity Δ from eigenvalues
𝜆1 ≥ 𝜆2 ≥ 𝜆3 of the gyration tensor:

Δ =
3
2

∑
𝑖 (𝜆𝑖 − 𝜆)2

(∑𝑖 𝜆𝑖 )2 (2)

2.3 Surface vs. Bulk Conditions
Bulk region: volume fraction 𝜙 = 0.30, interaction boost factor
1.5. Surface region: 𝜙 = 0.15, boost factor 0.8. Effective persistence
length is modulated by crowding: 𝑙eff𝑝 = 𝑙𝑝 (1 − 0.3𝜙) × 𝑓boost.

3 RESULTS
3.1 Surface vs. Bulk Conformations
Surface polymers are significantly more extended than bulk poly-
mers (Table 1). Themean𝑅𝑔 in the bulk is 1.905±0.468 nm compared
to 2.252 ± 0.563 nm at the surface, yielding a surface-to-bulk ratio
of 1.183. This difference is statistically significant (KS statistic =
0.308, 𝑝 < 10−10; Cohen’s 𝑑 = 0.671).

Table 1: Surface vs. bulk conformational metrics.

Metric Bulk Surface Ratio
𝑅𝑔 (nm) 1.905 ± 0.468 2.252 ± 0.563 1.183
𝑅𝑒𝑒 (nm) 4.558 ± 1.791 5.392 ± 2.233 1.183
Asphericity 0.385 0.406 1.055

3.2 Chain Length Scaling
The scaling analysis yields 𝑅𝑔 ∼ 𝑁 𝜈 with 𝜈 = 0.509 (𝑅2 = 0.999),
close to the ideal chain value of 0.5 (Figure 2). The end-to-end
distance scaling exponent is 𝜈𝑒𝑒 = 0.508 (𝑅2 = 0.996).

3.3 In Vivo vs. In Vitro
In vivo conformations are more compact than in vitro, with 𝑅𝑔 re-
duced by 5.48% (in vivo: 1.947±0.463 nm; in vitro: 2.060±0.515 nm).
Asphericity decreases slightly in vivo (0.397 vs. 0.407), indicating
more isotropic conformations under crowded conditions.
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Figure 1: Surface vs. bulk conformational distributions. Left:
𝑅𝑔 distributions. Center: 𝑅𝑒𝑒 distributions. Right: Summary
comparison.

Figure 2: Left: Chain length scaling of 𝑅𝑔 and 𝑅𝑒𝑒 , with fitted
exponent 𝜈 = 0.509. Right: Asphericity vs. chain length.

Figure 3: Comparison of polymer conformational metrics
between in vitro and in vivo conditions.

3.4 Conformation-Function Coupling
Polymer conformation strongly predicts material properties. The
𝑅𝑔–viscosity correlation is 𝑟 = 0.917 (𝑝 < 10−6), indicating that
more extended polymers produce higher viscosity. The𝑅𝑔–diffusion
correlation is 𝑟 = −0.869 (𝑝 < 10−6), confirming that larger poly-
mers diffuse more slowly.

3.5 Radial Profiles
Radial profiles show a gradual transition from compact conforma-
tions in the condensate interior to extended conformations at the
surface (Figure 4). The density profile exhibits a sharp interface
at the condensate boundary (𝑅 = 200 nm), while conformational
metrics transition over a width of approximately 30 nm.

Figure 4: Radial profiles of density, 𝑅𝑔 , and asphericity within
and around the condensate.

4 DISCUSSION
Our results demonstrate that polymer conformations within con-
densates are heterogeneous, with significant differences between
surface and bulk regions. The surface-to-bulk 𝑅𝑔 ratio of 1.183 with
Cohen’s 𝑑 = 0.671 indicates a medium-to-large effect size. The
scaling exponent 𝜈 = 0.509 suggests near-ideal chain behavior
within condensates, consistent with the theta-solvent-like environ-
ment created by balanced polymer-polymer and polymer-solvent
interactions [3, 4].

The 5.48% compaction in vivo relative to in vitro conditions high-
lights the importance of considering cellular context when interpret-
ing experimental measurements. The strong conformation-function
correlations (𝑟 = 0.917 for viscosity, 𝑟 = −0.869 for diffusion) estab-
lish that conformational heterogeneity directly impacts condensate
material properties.

5 CONCLUSION
We provide a computational characterization of polymer confor-
mations within biomolecular condensates, revealing: (1) surface
polymers are 18.3% more extended than bulk (𝑅𝑔 ratio 1.183); (2)
scaling exponent 𝜈 = 0.509 indicates near-ideal chain conditions;
(3) in vivo conformations are 5.48% more compact than in vitro;
and (4) conformational state strongly predicts viscosity (𝑟 = 0.917)
and diffusion (𝑟 = −0.869).
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