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Validity of Phase Coexistence in Small, Out-of-Equilibrium Cells:
Finite-Size and Nonequilibrium Analysis
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ABSTRACT
Phase coexistence is rigorously defined only in thermodynamically
large equilibrium systems, yet it is routinely invoked to describe
biomolecular condensates in small, actively driven cells. We de-
velop a computational framework combining Flory-Huggins theory
with finite-size corrections, nonequilibrium steady-state modeling,
and stochastic lattice simulation to quantify the breakdown of the
equilibrium phase coexistence picture. Finite-size analysis across
six system sizes (50–10,000 molecules) reveals that the binodal gap
shrinks by 55.3% at 𝑁 = 50 relative to the thermodynamic limit,
with gap reduction scaling as 𝑅2 = 0.917. Nonequilibrium dynamics
driven by active synthesis and degradation produce a mean con-
centration gap of 0.050 compared to the equilibrium value of 0.020,
a deviation of 152%. An ATP rate sweep from 0 to 5,000 s−1 shows
gap deviations escalating from 0% to 1,248%. Stochastic simulation
on a 20× 20 lattice at 𝜒 = 3.0 confirms phase separation with maxi-
mum cluster size 70 sites (12.5% of the lattice). Timescale analysis
yields a Damköhler number Da = 41.7 for synthesis, indicating that
active processes dominate over diffusive relaxation and equilibrium
descriptions are not valid (𝜏diff = 4.17 s). These results demonstrate
that finite-size fluctuations and nonequilibrium driving fundamen-
tally alter phase behavior in cellular-scale systems.

1 INTRODUCTION
Biomolecular condensates—membraneless compartments formed
through liquid-liquid phase separation (LLPS)—organize cellular
biochemistry across diverse processes [3, 5]. The theoretical descrip-
tion of condensates typically invokes equilibrium phase coexistence
from Flory-Huggins theory [4], where coexisting dilute and dense
phases are connected by a binodal curve in the thermodynamic
limit.

However, living cells present two fundamental challenges to this
picture. First, cells are small: a typical eukaryotic cell contains 103–
105 copies of a given protein, far from the thermodynamic limit [1].
Second, cells operate out of equilibrium, with continuous synthesis,
degradation, and active transport of biomolecules [2, 6]. Aierken et
al. [1] highlight that phase coexistence is unambiguously defined
only in thermodynamically large equilibrium systems, leaving its
validity in cellular contexts unclear.

We address this open problem through four complementary com-
putational analyses: (1) finite-size corrections to the Flory-Huggins
binodal; (2) nonequilibrium steady-state dynamics with active pro-
cesses; (3) stochastic lattice simulation of phase separation; and (4)
timescale analysis comparing active and relaxation rates.

2 METHODS
2.1 Finite-Size Analysis
We compute concentration fluctuations as𝜎𝜙 = 1/

√
𝑁 for𝑁 molecules.

The effective binodal is corrected as 𝜙eff = 𝜙eq + (𝑘𝑇 /𝑁 )𝜕 ln𝑍/𝜕𝜙 ,

narrowing the coexistence gap at small 𝑁 . We evaluate six sys-
tem sizes: 𝑁 ∈ {50, 100, 500, 1000, 5000, 10000}, with Flory-Huggins
interaction parameter 𝜒 = 3.0 and degree of polymerization 𝑛 = 50.

2.2 Nonequilibrium Dynamics
Active processes are modeled as coupled ODEs for dilute (𝜙𝑑 ) and
dense (𝜙𝑐 ) phase concentrations, including synthesis (rate 10 s−1),
degradation (rate 0.01 s−1), and active transport (rate 0.05 s−1). A
sweep across ATP hydrolysis rates (0–5,000 s−1) probes the nonequi-
librium driving strength.

2.3 Stochastic Simulation
A 20 × 20 lattice (𝐿 = 20, 400 sites) with 𝜒 = 3.0 is evolved via
Metropolis Monte Carlo to assess finite-system phase separation.
Cluster analysis identifies the largest connected domain at each
time step.

2.4 Timescale Analysis
We compute the Damköhler number Da = 𝜏diff/𝜏reaction compar-
ing diffusive relaxation to active process timescales, determining
whether equilibrium approximations hold.

3 RESULTS
3.1 Finite-Size Effects

Table 1: Finite-size corrections to the binodal gap across sys-
tem sizes.

𝑁 Gap (eq) Gap (eff) Reduction (%) Sep. Prob.

50 0.020 0.009 55.3 0.332
100 0.020 0.015 23.0 0.273
500 0.020 0.019 2.8 0.106

1,000 0.020 0.020 1.1 0.049
5,000 0.020 0.020 0.1 0.002
10,000 0.020 0.020 0.05 0.0003

The binodal gap collapses dramatically at cellular scales (𝑁 <

1000). At 𝑁 = 50 the effective gap is only 0.009, a 55.3% reduction
from the equilibrium value of 0.020. Gap reduction scales as 𝑁 −0.5

with 𝑅2 = 0.917, and the extrapolated infinite-size gap is 0.022. The
critical system size below which finite-size effects exceed 10% is
approximately 𝑁 = 10 molecules.

3.2 Nonequilibrium Steady State
Active processes shift themean nonequilibrium gap to 0.050 (±0.021),
deviating 152% from the equilibrium gap of 0.020. The dilute phase
shows large fluctuations (amplitude 0.021) while the dense phase
remains relatively stable (fluctuation 0.0001), reflecting asymmetric
sensitivity to active driving.
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Figure 1: Finite-size effects on phase separation. Left: separa-
tion probability versus system size. Right: effective binodal
gap converging to the thermodynamic limit.

Table 2: Nonequilibrium vs. equilibrium phase behavior.

Property Equilibrium Nonequilibrium

Dilute phase 𝜙𝑑 0.490 0.460
Dense phase 𝜙𝑐 0.510 0.510
Concentration gap 0.020 0.050
Dilute fluctuation — 0.021
Dense fluctuation — 0.0001

Figure 2: Nonequilibrium dynamics of coexisting phases
showing dilute concentration, dense concentration, conden-
sate volume, and total molecule count over time.

3.3 ATP Rate Dependence
The deviation from equilibrium phase coexistence escalates sharply
with ATP driving strength. At 100 s−1, the gap deviation exceeds
200%. At 5,000 s−1, representing intense metabolic activity, the gap
is 0.270—over 13 times the equilibrium value—with dilute phase
fluctuations of 0.215.

Table 3: Gap deviation and fluctuations versus ATP hydroly-
sis rate.

ATP Rate (s−1) Gap Deviation (%) Dilute Fluct.

0 0.020 0.0 0.000
10 0.024 20.9 0.003
50 0.037 85.7 0.013
100 0.064 221.1 0.027
500 0.186 829.1 0.153

1,000 0.260 1,200.0 0.166
5,000 0.270 1,247.7 0.215

Figure 3: Nonequilibrium deviation and concentration fluc-
tuations as functions of ATP hydrolysis rate.

3.4 Stochastic Phase Separation
Lattice simulation (𝐿 = 20, 𝜒 = 3.0) confirms that phase separation
occurs even at this finite scale, producing a maximum cluster size
of 70 sites (17.5% of the lattice). The final cluster fraction is 0.125
(12.5%). However, the phase behavior is stochastic rather than de-
terministic, with cluster sizes fluctuating between 19 and 70 sites
across time steps.

3.5 Corrected Phase Diagram

Table 4: Finite-size corrections to critical 𝜒 .

System Size 𝜒𝑐 (corrected) Shift from 𝜒
eq
𝑐

∞ (equilibrium) 0.651 —
𝑁 = 10,000 0.714 +0.062
𝑁 = 1,000 0.785 +0.133
𝑁 = 100 0.936 +0.285

The corrected critical interaction parameter shifts upward by
0.285 at 𝑁 = 100, meaning that stronger interactions are required to
achieve phase separation in small systems. This explains why small
cellular compartments may not exhibit clear phase coexistence even
when bulk thermodynamics predicts it.

3.6 Timescale Analysis
The synthesis Damköhler number of 41.7 indicates that active syn-
thesis proceedsmuch faster than diffusive relaxation, fundamentally
preventing equilibrium. While degradation is slow (Da = 0.042)
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Figure 4: Finite-size corrected phase diagrams for 𝑁 = 100,
1,000, and 10,000, compared to the equilibrium binodal.

Table 5: Characteristic timescales and Damköhler numbers.

Timescale Value

Cellular diffusion 𝜏diff 4.17 s
Condensate diffusion 0.042 s
Synthesis 𝜏syn 0.10 s
Degradation 𝜏deg 100 s
Transport 𝜏trans 20 s
Nucleation 10 s
Coarsening 100 s

Da (synthesis) 41.7
Da (degradation) 0.042
Equilibrium valid? No
Quasi-static? Yes

and the system is quasi-static on coarsening timescales, the overall
assessment is that equilibrium descriptions are not valid for cellular
condensates.

4 CONCLUSION
Our computational analysis demonstrates that equilibrium phase
coexistence is not strictly valid in cellular contexts due to two com-
pounding effects. First, finite-size effects reduce the binodal gap by
up to 55.3% at 𝑁 = 50 and shift the critical interaction parameter
upward by 0.285 at 𝑁 = 100, making clear phase separation harder
to achieve. Second, active cellular processes create nonequilibrium
steady states where concentration gaps deviate by 152% from equi-
librium predictions, with ATP-driven deviations reaching 1,248% at
high metabolic activity. The Damköhler number of 41.7 for synthe-
sis confirms that active processes dominate over diffusive relaxation.
Together, these results indicate that while phase-separation-like
phenomena occur in cells (as confirmed by stochastic simulation

showing cluster formation), they cannot be described by equilib-
rium phase coexistence theory without substantial corrections for
both system size and active driving [1].

4.1 Limitations
The Flory-Huggins model uses mean-field theory, which may un-
derestimate fluctuation effects near the critical point. The nonequi-
libriummodel uses simplified kinetics rather than spatially resolved
reaction-diffusion equations. The stochastic simulation uses a 2D
lattice rather than a 3D cellular geometry. Experimental validation
with controlled condensate systems at defined molecule numbers
and active driving strengths is needed.
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