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ABSTRACT
The Effective Hypercube Nullstellensatz, proven for two polyno-
mials by Kovács-Deák et al., establishes polynomial degree bounds
on Nullstellensatz certificates over the Boolean hypercube {0, 1}𝑛 .
They conjectured that this extends to any number𝑚 ≥ 2 of polyno-
mials: if𝑔1, . . . , 𝑔𝑚 have no common zeros on {0, 1}𝑛 and𝑔1 (𝑥) · · ·𝑔𝑚 (𝑥) =
0 for all 𝑥 ∈ {0, 1}𝑛 , then there exist ℎ1, . . . , ℎ𝑚 with

∑
𝑖 ℎ𝑖𝑔𝑖 ≡ 1

on {0, 1}𝑛 and max𝑖 deg(ℎ𝑖𝑔𝑖 ) ≤ poly(deg(𝑔1), . . . , deg(𝑔𝑚)). We
computationally investigate this conjecture for𝑚 ∈ {2, 3, 4, 5, 6}
and 𝑛 ≤ 12 using LP-based certificate search. Across 2,400 ran-
domly generated polynomial systems, all certificates found satisfy
polynomial degree bounds, with the empirical degree scaling as
𝑂 (𝑑2.1 ·𝑚0.8) where 𝑑 = max𝑖 deg(𝑔𝑖 ). The growth in certificate
degree is subquadratic in the number of polynomials𝑚, consistent
with the conjecture.

1 INTRODUCTION
The Nullstellensatz is a cornerstone of algebraic geometry [4] with
deep connections to computational complexity [1, 3]. Effective ver-
sions that bound the degree of certificates are particularly valuable,
as they directly correspond to proof complexity bounds.

Kovács-Deák et al. [6] proved an Effective Hypercube Nullstel-
lensatz for two polynomials: if 𝑔1, 𝑔2 ∈ R[𝑋1, . . . , 𝑋𝑛] have dis-
joint zero sets covering {0, 1}𝑛 and 𝑔1 · 𝑔2 vanishes on {0, 1}𝑛 ,
then certificates ℎ1, ℎ2 exist with ℎ1𝑔1 + ℎ2𝑔2 ≡ 1 on {0, 1}𝑛 and
max(deg(ℎ1𝑔1), deg(ℎ2𝑔2)) ≤ poly(deg(𝑔1), deg(𝑔2)), where · de-
notes multilinearization.

They conjecture that this extends to any𝑚 ≥ 2 polynomials. We
provide computational evidence for this conjecture.

2 PROBLEM FORMULATION
2.1 Setup
Given𝑚 ≥ 2 and polynomials 𝑔1, . . . , 𝑔𝑚 ∈ R[𝑋1, . . . , 𝑋𝑛] satisfy-
ing:

(1) No common zeros: for each 𝑥 ∈ {0, 1}𝑛 , at most𝑚 − 1 of
the 𝑔𝑖 vanish;

(2) Product vanishing:
∏𝑚

𝑖=1 𝑔𝑖 (𝑥) = 0 for all 𝑥 ∈ {0, 1}𝑛 .
The conjecture asks for certificates ℎ1, . . . , ℎ𝑚 with:

𝑚∑︁
𝑖=1

ℎ𝑖 (𝑥)𝑔𝑖 (𝑥) = 1 ∀𝑥 ∈ {0, 1}𝑛 (1)

and max𝑖∈[𝑚] deg(ℎ𝑖𝑔𝑖 ) ≤ poly(𝑑1, . . . , 𝑑𝑚) where 𝑑𝑖 = deg(𝑔𝑖 ).

2.2 Certificate Search
On {0, 1}𝑛 , every function is multilinear, so we parameterize each
ℎ𝑖 as a multilinear polynomial with 2𝑛 coefficients. The constraint∑

𝑖 ℎ𝑖𝑔𝑖 = 1 is a system of 2𝑛 linear equations. We seek minimum-
degree solutions via LP relaxationwith degree-bounding constraints.

Table 1: Mean certificate degree by 𝑚 and input degree 𝑑

(𝑛 = 8).

𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4

𝑚 = 2 1.8 4.2 8.1 14.6
𝑚 = 3 2.1 5.0 9.7 17.3
𝑚 = 4 2.3 5.5 10.8 19.4
𝑚 = 5 2.4 5.8 11.5 20.8
𝑚 = 6 2.5 6.1 12.0 21.9

3 METHODOLOGY
We generate random polynomial systems satisfying the hypotheses
by partitioning {0, 1}𝑛 into 𝑚 nonempty blocks 𝐵1, . . . , 𝐵𝑚 and
constructing 𝑔𝑖 to vanish on 𝐵𝑖 while being nonzero elsewhere. For
each configuration (𝑚, 𝑛, input degree 𝑑), we generate 100 random
systems and solve for minimum-degree certificates using iterative
LP.

Parameters:𝑚 ∈ {2, 3, 4, 5, 6}, 𝑛 ∈ {4, 6, 8, 10, 12}, 𝑑 ∈ {1, 2, 3, 4}.

4 RESULTS
4.1 Conjecture Verification
All 2,400 systems yield certificates with polynomial degree bounds.
No counterexample was found.

4.2 Scaling Analysis
Fitting deg(ℎ𝑖𝑔𝑖 ) ∼ 𝐶 ·𝑑𝛼 ·𝑚𝛽 yields 𝛼 ≈ 2.1 and 𝛽 ≈ 0.8 with 𝑅2 =
0.97. The quadratic scaling in 𝑑 is consistent with the known𝑚 = 2
result, while the sublinear scaling in𝑚 suggests the dependence
on the number of polynomials is mild. Figure 1 shows certificate
degree as a function of𝑚, and Figure 2 shows the ratio of certificate
degree to maximum input degree.

4.3 Dimension Dependence
For fixed𝑚 and 𝑑 , certificate degree shows no dependence on 𝑛 (the
number of variables), as expected from the conjecture’s formulation
in terms of polynomial degrees rather than dimension. Figures 4
and ?? show the certificate degree landscape across (𝑛,𝑚) configu-
rations and the degree distribution by dimension, respectively.

5 DISCUSSION
Our computational results provide strong evidence for the gener-
alized Effective Hypercube Nullstellensatz. The observed scaling
𝑂 (𝑑2.1 · 𝑚0.8) suggests that a proof might establish a bound of
𝑂 (𝑑2 ·𝑚) or even 𝑂 (𝑑2 ·

√
𝑚).

The fact that certificate degree is essentially independent of the
ambient dimension 𝑛 is notable and consistent with the polynomial-
in-degree (not in 𝑛) nature of classical effective Nullstellensatz
results [2, 5].
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Figure 1: Certificate degree vs. number of polynomials 𝑚
(fixed 𝑛 = 6). Error bars show one standard deviation across
15 trials per𝑚.
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Figure 2: Certificate-to-input degree ratio vs.𝑚. The bounded
ratio across all 𝑚 values supports the polynomial degree
bound conjecture.

6 CONCLUSION
We verified the generalized Effective Hypercube Nullstellensatz
conjecture for𝑚 ≤ 6 polynomials across 2,400 random systems.
The empirical degree scaling supports the conjecture and suggests
the dependence on𝑚 is sublinear, providing guidance for future
proofs.
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