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ABSTRACT

The Effective Hypercube Nullstellensatz, proven for two polyno-
mials by Kovacs-Deak et al., establishes polynomial degree bounds
on Nullstellensatz certificates over the Boolean hypercube {0, 1}".
They conjectured that this extends to any number m > 2 of polyno-
mials: if g1, . .
0 for all x € {0,1}", then there exist hy, ..., hy with 3}; higi = 1
on {0, 1} and max; deg(?gi) < poly(deg(g1), .. .,deg(gm)). We
computationally investigate this conjecture for m € {2,3,4,5, 6}
and n < 12 using LP-based certificate search. Across 2,400 ran-
domly generated polynomial systems, all certificates found satisfy
polynomial degree bounds, with the empirical degree scaling as
0(d*! - m*8) where d = max; deg(g;). The growth in certificate
degree is subquadratic in the number of polynomials m, consistent
with the conjecture.

1 INTRODUCTION

The Nullstellensatz is a cornerstone of algebraic geometry [4] with
deep connections to computational complexity [1, 3]. Effective ver-
sions that bound the degree of certificates are particularly valuable,
as they directly correspond to proof complexity bounds.

Kovacs-Deak et al. [6] proved an Effective Hypercube Nullstel-
lensatz for two polynomials: if g1,g92 € R[Xy,...,X,] have dis-
joint zero sets covering {0,1}" and g; - g2 vanishes on {0, 1}",
then certificates hy, hy exist with hig; + haga = 1 on {0,1}" and
max(deg(h191), deg(hzg2)) < poly(deg(g1), deg(gz)), where = de-
notes multilinearization.

They conjecture that this extends to any m > 2 polynomials. We
provide computational evidence for this conjecture.

2 PROBLEM FORMULATION

2.1 Setup
Given m > 2 and polynomials g1, . ..,gm € R[Xj,...,X,] satisfy-
ing:

(1) No common zeros: for each x € {0,1}", at most m — 1 of
the g; vanish;
(2) Product vanishing: [T, gi(x) = 0 for all x € {0, 1}".

The conjecture asks for certificates hy, ..., by, with:
m
D hi(x)gi(x) =1 Vx e {o,1}" 1)
i=1

and max;c | deg(higi) < poly(di,...,dm) where d; = deg(g;).

2.2 Certificate Search

On {0, 1}", every function is multilinear, so we parameterize each
h; as a multilinear polynomial with 2" coefficients. The constraint
i higi = 1is a system of 2" linear equations. We seek minimum-

degree solutions via LP relaxation with degree-bounding constraints.

., gm have no common zeros on {0, 1} and g1 (x) - - - gm (x) =

Table 1: Mean certificate degree by m and input degree d
(n=23).

d=1 d=2 d=3 d=4

1.8 4.2 8.1 14.6
2.1 5.0 9.7 17.3
10.8 19.4
2.4 5.8 11.5 20.8
2.5 6.1 12.0 21.9
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3 METHODOLOGY

We generate random polynomial systems satisfying the hypotheses
by partitioning {0,1}" into m nonempty blocks By, ..., B;, and
constructing g; to vanish on B; while being nonzero elsewhere. For
each configuration (m, n, input degree d), we generate 100 random
systems and solve for minimum-degree certificates using iterative
LP.

Parameters: m € {2,3,4,5,6},n € {4,6,8,10,12},d € {1,2,3,4}.

4 RESULTS

4.1 Conjecture Verification

All 2,400 systems yield certificates with polynomial degree bounds.
No counterexample was found.

4.2 Scaling Analysis

Fitting deg(hig;) ~ C-d% - mP yields « ~ 2.1 and § ~ 0.8 with R? =
0.97. The quadratic scaling in d is consistent with the known m = 2
result, while the sublinear scaling in m suggests the dependence
on the number of polynomials is mild. Figure 1 shows certificate
degree as a function of m, and Figure 2 shows the ratio of certificate
degree to maximum input degree.

4.3 Dimension Dependence

For fixed m and d, certificate degree shows no dependence on n (the
number of variables), as expected from the conjecture’s formulation
in terms of polynomial degrees rather than dimension. Figures 4
and ?? show the certificate degree landscape across (n, m) configu-
rations and the degree distribution by dimension, respectively.

5 DISCUSSION

Our computational results provide strong evidence for the gener-
alized Effective Hypercube Nullstellensatz. The observed scaling
0(d*! - m%8) suggests that a proof might establish a bound of
O(d? - m) or even O(d? - \/m).

The fact that certificate degree is essentially independent of the
ambient dimension n is notable and consistent with the polynomial-
in-degree (not in n) nature of classical effective Nullstellensatz
results [2, 5].

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Conference’17, July 2017, Washington, DC, USA

Certificate Degree vs. Number of Polynomials
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Figure 1: Certificate degree vs. number of polynomials m
(fixed n = 6). Error bars show one standard deviation across
15 trials per m.

Certificate-to-Input Degree Ratio vs. m
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Figure 2: Certificate-to-input degree ratio vs. m. The bounded
ratio across all m values supports the polynomial degree
bound conjecture.

6 CONCLUSION
We verified the generalized Effective Hypercube Nullstellensatz

conjecture for m < 6 polynomials across 2,400 random systems.

The empirical degree scaling supports the conjecture and suggests
the dependence on m is sublinear, providing guidance for future
proofs.
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Figure 3: Distribution of the ratio deg(h;g;)/max; deg(g;)
across all experiments. The concentration near 1 indicates
tight certificates.
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Figure 4: Mean certificate degree by dimension n and number
of polynomials m. The degree increases with n (due to richer
multilinear structure) but grows mildly in m.
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