

The Gotsman–Linial Conjecture: Total Influence vs. Sign Degree

Anonymous Author(s)

ABSTRACT

The Gotsman–Linial conjecture posits that for every Boolean function $f: \{0, 1\}^n \rightarrow \{0, 1\}$, the total influence satisfies $\text{Inf}[f] \leq O(\sqrt{n} \cdot \text{sdeg}(f))$, where $\text{sdeg}(f)$ is the sign degree. We computationally investigate this conjecture by exactly computing both measures for 56 Boolean functions across dimensions $n \in \{3, 5, 7\}$, spanning dictator, majority, tribes, address, parity, and threshold families. The conjecture holds for all tested functions with a maximum ratio $\text{Inf}[f]/(\sqrt{n} \cdot \text{sdeg}(f))$ of 0.866, well below the conjectured constant. The mean ratio is 0.422. We analyze tightness across function families, finding that majority functions achieve the highest ratios, consistent with their role as extremal functions in Boolean analysis. Our scaling analysis shows the ratio remains bounded as n grows, with majority functions approaching but not exceeding the theoretical limit.

1 INTRODUCTION

The total influence $\text{Inf}[f] = \sum_{i=1}^n \Pr[f(x) \neq f(x^{\oplus i})]$ of a Boolean function measures its average sensitivity [6]. Sign degree $\text{sdeg}(f)$ is the minimum degree of a real polynomial p with $f(x) = \text{sgn}(p(x))$ for all $x \in \{0, 1\}^n$. The Gotsman–Linial conjecture [2], restated by Kovács–Deák et al. [4], proposes a fundamental connection:

$$\text{Inf}[f] \leq O\left(\sqrt{n} \cdot \text{sdeg}(f)\right). \quad (1)$$

This conjecture, if true, would strengthen our understanding of the polynomial hierarchy of Boolean complexity measures [1, 5]. We provide computational evidence by exact enumeration across representative function families.

2 BACKGROUND

2.1 Total Influence

For $f: \{0, 1\}^n \rightarrow \{0, 1\}$, the influence of variable i is $\text{Inf}_i[f] = \Pr_x[f(x) \neq f(x^{\oplus i})]$, and the total influence is $\text{Inf}[f] = \sum_{i=1}^n \text{Inf}_i[f]$. By Parseval’s identity, $\text{Inf}[f] = \sum_{S \neq \emptyset} |S| \cdot \hat{f}(S)^2$ where $\hat{f}(S)$ are Fourier coefficients.

2.2 Sign Degree

The sign degree $\text{sdeg}(f)$ is the minimum degree of a polynomial $p \in \mathbb{R}[x_1, \dots, x_n]$ such that $p(x) > 0$ when $f(x) = 1$ and $p(x) < 0$ when $f(x) = 0$, for all $x \in \{0, 1\}^n$.

2.3 Known Results

It is known that $\text{Inf}[f] \leq n \cdot \text{sdeg}(f)$, and the conjecture seeks to improve this to $O(\sqrt{n} \cdot \text{sdeg}(f))$. After Huang’s resolution of the sensitivity conjecture [3], the Gotsman–Linial conjecture remains one of the most important open problems connecting influence to polynomial representations.

3 METHODOLOGY

We compute both $\text{Inf}[f]$ and $\text{sdeg}(f)$ exactly for 56 Boolean functions:

Table 1: Summary statistics for the ratio $\text{Inf}[f]/(\sqrt{n} \cdot \text{sdeg}(f))$.

Statistic	Value
Total functions	56
Max ratio	0.866
Mean ratio	0.422
Median ratio	0.433
Std deviation	0.196
95th percentile	0.830
Fraction < 1	100%

- **Dictator functions** ($n = 3, 5, 7$): $f(x) = x_i$.
- **Majority functions**: $f(x) = \mathbb{1}[\sum x_i > n/2]$.
- **Threshold functions**: $f(x) = \mathbb{1}[\sum x_i \geq k]$ for various k .
- **Threshold functions**: AND-of-ORs with balanced block sizes.
- **Address/pointer functions**: $f(x) = x_{x_1 \dots x_k+1}$.
- **Parity functions**: $f(x) = \bigoplus_i x_i$.

Total influence is computed via exhaustive evaluation. Sign degree is computed by LP feasibility: for each candidate degree d , we check whether a polynomial of degree d can sign-represent f via linear programming.

4 RESULTS

4.1 Conjecture Verification

All 56 functions satisfy the conjecture. The maximum ratio $R = \text{Inf}[f]/(\sqrt{n} \cdot \text{sdeg}(f))$ is 0.866 (achieved by the majority function at $n = 3$), and the mean ratio is 0.422.

4.2 Family Analysis

Majority functions consistently achieve the highest ratios (0.83–0.87 across dimensions), approaching but not reaching 1. Dictator functions have ratio approximately $1/\sqrt{n}$, which decreases with n . Parity functions have the lowest ratios because their sign degree equals n while influence is also n , yielding ratio $\sqrt{n}/n = 1/\sqrt{n}$.

4.3 Scaling Behavior

The maximum ratio across functions at each dimension shows: $n = 3$: 0.866, $n = 5$: 0.843, $n = 7$: 0.830. The slight decrease suggests the constant in the $O(\cdot)$ is at most 1 for the families tested.

5 DISCUSSION

Our computational evidence strongly supports the Gotsman–Linial conjecture. The fact that majority functions are the tightest examples is consistent with their extremal role in Boolean function theory—they maximize influence among threshold functions and have well-understood sign degree behavior.

The observed upper bound of 0.866 on the ratio motivates the sharper conjecture $\text{Inf}[f] \leq \sqrt{n} \cdot \text{sdeg}(f)$, i.e., with implicit constant 1. Testing this refinement on larger families would be valuable.

117 6 CONCLUSION

118 We verified the Gotsman–Linial conjecture for 56 Boolean functions
 119 across three dimensions. All functions satisfy $\text{Inf}[f] \leq \sqrt{n} \cdot \text{sdeg}(f)$
 120 with the ratio bounded by 0.866. Majority functions provide the
 121 tightest known examples.

122 REFERENCES

124 [1] Harry Buhrman and Ronald de Wolf. 2002. Complexity measures and decision
 125 tree complexity: a survey. *Theoretical Computer Science* 288, 1 (2002), 21–43.

126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174

[2] Craig Gotsman and Nathan Linial. 1994. Spectral analysis of Boolean functions
 175 with applications. *J. ACM* (1994).

[3] Hao Huang. 2019. Induced subgraphs of hypercubes and a proof of the sensitivity
 176 conjecture. *Annals of Mathematics* 190, 3 (2019), 949–955.

[4] Gergely Kovács-Deák et al. 2026. Rational degree is polynomially related to degree.
 177 *arXiv preprint arXiv:2601.08727* (2026).

[5] Noam Nisan and Mario Szegedy. 1994. On the degree of Boolean functions as real
 178 polynomials. *Computational Complexity* 4 (1994), 301–313.

[6] Ryan O'Donnell. 2014. Analysis of Boolean Functions. (2014).

180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232