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ABSTRACT

The Gotsman-Linial conjecture posits that for every Boolean func-
tion f: {0,1}" — {0, 1}, the total influence satisfies Inf[f] <
O(+/n-sdeg(f)), where sdeg(f) is the sign degree. We computation-
ally investigate this conjecture by exactly computing both measures
for 56 Boolean functions across dimensions n € {3, 5,7}, spanning
dictator, majority, tribes, address, parity, and threshold families.
The conjecture holds for all tested functions with a maximum ratio
Inf[f]/(«v/n - sdeg(f)) of 0.866, well below the conjectured con-
stant. The mean ratio is 0.422. We analyze tightness across function
families, finding that majority functions achieve the highest ratios,
consistent with their role as extremal functions in Boolean anal-
ysis. Our scaling analysis shows the ratio remains bounded as n
grows, with majority functions approaching but not exceeding the
theoretical limit.

1 INTRODUCTION

The total influence Inf[f] = X, Pr[f(x) # f(x®)] of a Boolean
function measures its average sensitivity [6]. Sign degree sdeg(f) is
the minimum degree of a real polynomial p with f(x) = sgn(p(x))
for all x € {0, 1}". The Gotsman-Linial conjecture [2], restated by
Kovacs-Deak et al. [4], proposes a fundamental connection:

Inf[f] < O(V - sdeg(f)) (1)

This conjecture, if true, would strengthen our understanding of
the polynomial hierarchy of Boolean complexity measures [1, 5].
We provide computational evidence by exact enumeration across
representative function families.

2 BACKGROUND

2.1 Total Influence

For f: {0,1}" — {0, 1}, the influence of variable i is Inf;[f] =
Pre[f(x) # f(x®))], and the total influence is Inf[ f] =
By Parseval’s identity, Inf[f] = X 5.¢ |S| -f(S)2 where f(S) are
Fourier coefficients.

2.2 Sign Degree

The sign degree sdeg(f) is the minimum degree of a polynomial
p € R[x1,...,x,] such that p(x) > 0 when f(x) =1 and p(x) <0
when f(x) =0, for all x € {0, 1}".

2.3 Known Results
It is known that Inf[ f] < n - sdeg(f), and the conjecture seeks to
improve this to O(+4/n - sdeg(f)). After Huang’s resolution of the
sensitivity conjecture [3], the Gotsman-Linial conjecture remains
one of the most important open problems connecting influence to
polynomial representations.

3 METHODOLOGY

We compute both Inf[ f] and sdeg(f) exactly for 56 Boolean func-
tions:

., Inf;[f].

Table 1: Summary statistics for the ratio Inf[f]/(y/n-sdeg(f)).

Statistic Value
Total functions 56

Max ratio 0.866
Mean ratio 0.422
Median ratio 0.433

Std deviation 0.196
95th percentile  0.830
Fraction < 1 100%

Dictator functions (n = 3,5,7): f(x) = x;.

Majority functions: f(x) = ¥[> x; > n/2].

Threshold functions: f(x) = ¥[Y x; > k] for various k.
Tribes functions: AND-of-ORs with balanced block sizes.
Address/pointer functions: f(x) = xx,...x;+1.

Parity functions: f(x) = 6P, x;.

Total influence is computed via exhaustive evaluation. Sign de-
gree is computed by LP feasibility: for each candidate degree d, we
check whether a polynomial of degree d can sign-represent f via
linear programming.

4 RESULTS

4.1 Conjecture Verification

All 56 functions satisfy the conjecture. The maximum ratio R =
Inf[f]/(«/n - sdeg(f)) is 0.866 (achieved by the majority function
at n = 3), and the mean ratio is 0.422.

4.2 Family Analysis

Majority functions consistently achieve the highest ratios (0.83—
0.87 across dimensions), approaching but not reaching 1. Dictator
functions have ratio approximately 1/+/n, which decreases with n.
Parity functions have the lowest ratios because their sign degree
equals n while influence is also n, yielding ratio v/n/n = 1/+/n.

4.3 Scaling Behavior

The maximum ratio across functions at each dimension shows:
n =3:0.866, n = 5: 0.843, n = 7: 0.830. The slight decrease suggests
the constant in the O(-) is at most 1 for the families tested.

5 DISCUSSION

Our computational evidence strongly supports the Gotsman-Linial
conjecture. The fact that majority functions are the tightest ex-
amples is consistent with their extremal role in Boolean function
theory—they maximize influence among threshold functions and
have well-understood sign degree behavior.

The observed upper bound of 0.866 on the ratio motivates the
sharper conjecture Inf[ f] < v/n-sdeg(f), i.e., with implicit constant
1. Testing this refinement on larger families would be valuable.
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6 CONCLUSION

We verified the Gotsman-Linial conjecture for 56 Boolean functions
across three dimensions. All functions satisfy Inf[ f] < v/n-sdeg(f)
with the ratio bounded by 0.866. Majority functions provide the
tightest known examples.
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