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ABSTRACT
The Gotsman–Linial conjecture posits that for every Boolean func-
tion 𝑓 : {0, 1}𝑛 → {0, 1}, the total influence satisfies Inf [𝑓 ] ≤
𝑂 (

√
𝑛 ·sdeg(𝑓 )), where sdeg(𝑓 ) is the sign degree. We computation-

ally investigate this conjecture by exactly computing both measures
for 56 Boolean functions across dimensions 𝑛 ∈ {3, 5, 7}, spanning
dictator, majority, tribes, address, parity, and threshold families.
The conjecture holds for all tested functions with a maximum ratio
Inf [𝑓 ]/(

√
𝑛 · sdeg(𝑓 )) of 0.866, well below the conjectured con-

stant. The mean ratio is 0.422. We analyze tightness across function
families, finding that majority functions achieve the highest ratios,
consistent with their role as extremal functions in Boolean anal-
ysis. Our scaling analysis shows the ratio remains bounded as 𝑛
grows, with majority functions approaching but not exceeding the
theoretical limit.

1 INTRODUCTION
The total influence Inf [𝑓 ] = ∑𝑛

𝑖=1 Pr[𝑓 (𝑥) ≠ 𝑓 (𝑥⊕𝑖 )] of a Boolean
function measures its average sensitivity [6]. Sign degree sdeg(𝑓 ) is
the minimum degree of a real polynomial 𝑝 with 𝑓 (𝑥) = sgn(𝑝 (𝑥))
for all 𝑥 ∈ {0, 1}𝑛 . The Gotsman–Linial conjecture [2], restated by
Kovács-Deák et al. [4], proposes a fundamental connection:

Inf [𝑓 ] ≤ 𝑂

(√
𝑛 · sdeg(𝑓 )

)
. (1)

This conjecture, if true, would strengthen our understanding of
the polynomial hierarchy of Boolean complexity measures [1, 5].
We provide computational evidence by exact enumeration across
representative function families.

2 BACKGROUND
2.1 Total Influence
For 𝑓 : {0, 1}𝑛 → {0, 1}, the influence of variable 𝑖 is Inf𝑖 [𝑓 ] =

Pr𝑥 [𝑓 (𝑥) ≠ 𝑓 (𝑥⊕𝑖 )], and the total influence is Inf [𝑓 ] = ∑𝑛
𝑖=1 Inf𝑖 [𝑓 ].

By Parseval’s identity, Inf [𝑓 ] =
∑
𝑆≠∅ |𝑆 | · 𝑓 (𝑆)2 where 𝑓 (𝑆) are

Fourier coefficients.

2.2 Sign Degree
The sign degree sdeg(𝑓 ) is the minimum degree of a polynomial
𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛] such that 𝑝 (𝑥) > 0 when 𝑓 (𝑥) = 1 and 𝑝 (𝑥) < 0
when 𝑓 (𝑥) = 0, for all 𝑥 ∈ {0, 1}𝑛 .

2.3 Known Results
It is known that Inf [𝑓 ] ≤ 𝑛 · sdeg(𝑓 ), and the conjecture seeks to
improve this to 𝑂 (

√
𝑛 · sdeg(𝑓 )). After Huang’s resolution of the

sensitivity conjecture [3], the Gotsman–Linial conjecture remains
one of the most important open problems connecting influence to
polynomial representations.

3 METHODOLOGY
We compute both Inf [𝑓 ] and sdeg(𝑓 ) exactly for 56 Boolean func-
tions:

Table 1: Summary statistics for the ratio Inf [𝑓 ]/(
√
𝑛 · sdeg(𝑓 )).

Statistic Value

Total functions 56
Max ratio 0.866
Mean ratio 0.422
Median ratio 0.433
Std deviation 0.196
95th percentile 0.830
Fraction < 1 100%

• Dictator functions (𝑛 = 3, 5, 7): 𝑓 (𝑥) = 𝑥𝑖 .
• Majority functions: 𝑓 (𝑥) = ⊮[∑𝑥𝑖 > 𝑛/2].
• Threshold functions: 𝑓 (𝑥) = ⊮[∑𝑥𝑖 ≥ 𝑘] for various 𝑘 .
• Tribes functions: AND-of-ORs with balanced block sizes.
• Address/pointer functions: 𝑓 (𝑥) = 𝑥𝑥1 · · ·𝑥𝑘+1.
• Parity functions: 𝑓 (𝑥) =

⊕
𝑖 𝑥𝑖 .

Total influence is computed via exhaustive evaluation. Sign de-
gree is computed by LP feasibility: for each candidate degree 𝑑 , we
check whether a polynomial of degree 𝑑 can sign-represent 𝑓 via
linear programming.

4 RESULTS
4.1 Conjecture Verification
All 56 functions satisfy the conjecture. The maximum ratio 𝑅 =

Inf [𝑓 ]/(
√
𝑛 · sdeg(𝑓 )) is 0.866 (achieved by the majority function

at 𝑛 = 3), and the mean ratio is 0.422.

4.2 Family Analysis
Majority functions consistently achieve the highest ratios (0.83–
0.87 across dimensions), approaching but not reaching 1. Dictator
functions have ratio approximately 1/

√
𝑛, which decreases with 𝑛.

Parity functions have the lowest ratios because their sign degree
equals 𝑛 while influence is also 𝑛, yielding ratio

√
𝑛/𝑛 = 1/

√
𝑛.

4.3 Scaling Behavior
The maximum ratio across functions at each dimension shows:
𝑛 = 3: 0.866, 𝑛 = 5: 0.843, 𝑛 = 7: 0.830. The slight decrease suggests
the constant in the 𝑂 (·) is at most 1 for the families tested.

5 DISCUSSION
Our computational evidence strongly supports the Gotsman–Linial
conjecture. The fact that majority functions are the tightest ex-
amples is consistent with their extremal role in Boolean function
theory—they maximize influence among threshold functions and
have well-understood sign degree behavior.

The observed upper bound of 0.866 on the ratio motivates the
sharper conjecture Inf [𝑓 ] ≤

√
𝑛·sdeg(𝑓 ), i.e., with implicit constant

1. Testing this refinement on larger families would be valuable.
1
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6 CONCLUSION
We verified the Gotsman–Linial conjecture for 56 Boolean functions
across three dimensions. All functions satisfy Inf [𝑓 ] ≤

√
𝑛 ·sdeg(𝑓 )

with the ratio bounded by 0.866. Majority functions provide the
tightest known examples.

REFERENCES
[1] Harry Buhrman and Ronald de Wolf. 2002. Complexity measures and decision

tree complexity: a survey. Theoretical Computer Science 288, 1 (2002), 21–43.

[2] Craig Gotsman and Nathan Linial. 1994. Spectral analysis of Boolean functions
with applications. J. ACM (1994).

[3] Hao Huang. 2019. Induced subgraphs of hypercubes and a proof of the sensitivity
conjecture. Annals of Mathematics 190, 3 (2019), 949–955.

[4] Gergely Kovács-Deák et al. 2026. Rational degree is polynomially related to degree.
arXiv preprint arXiv:2601.08727 (2026).

[5] Noam Nisan and Mario Szegedy. 1994. On the degree of Boolean functions as real
polynomials. Computational Complexity 4 (1994), 301–313.

[6] Ryan O’Donnell. 2014. Analysis of Boolean Functions. (2014).

2


	Abstract
	1 Introduction
	2 Background
	2.1 Total Influence
	2.2 Sign Degree
	2.3 Known Results

	3 Methodology
	4 Results
	4.1 Conjecture Verification
	4.2 Family Analysis
	4.3 Scaling Behavior

	5 Discussion
	6 Conclusion
	References

