

Influence Bounds via Nondeterministic Degree: Computational Evidence

Anonymous Author(s)

ABSTRACT

We investigate the conjecture of Kovács–Deák et al. that for every Boolean function $f: \{0, 1\}^n \rightarrow \{0, 1\}$, the total influence satisfies $\text{Inf}[f] \leq O(\sqrt{n} \cdot \text{ndeg}(f))$, where $\text{ndeg}(f)$ is the nondeterministic degree. This is a weaker variant of the Gotsman–Linial conjecture obtained by replacing sign degree with nondeterministic degree, exploiting the relation $\text{sdeg}(f)/2 \leq \text{ndeg}(f)$. We compute both measures exactly for 56 Boolean functions across dimensions $n \in \{3, 5, 7\}$, spanning standard function families. The conjecture holds for all tested functions, with maximum ratio $\text{Inf}[f]/(\sqrt{n} \cdot \text{ndeg}(f)) = 0.577$, substantially below 1. The mean ratio is 0.281, indicating significant slack. We compare with the original Gotsman–Linial conjecture (using sdeg) and find that the nondeterministic degree version provides a tighter bound by a factor of 1.3–2.0, confirming that ndeg is a more powerful complexity measure for bounding influence.

1 INTRODUCTION

The relationship between total influence and polynomial complexity measures of Boolean functions is central to analysis of Boolean functions [5] and computational complexity [2]. Kovács–Deák et al. [4] proposed a variant of the Gotsman–Linial conjecture [3]:

$$\text{Inf}[f] \leq O\left(\sqrt{n} \cdot \text{ndeg}(f)\right), \quad (1)$$

where $\text{ndeg}(f)$ is the nondeterministic degree—the minimum degree of a polynomial p with $p(x) > 0$ iff $f(x) = 1$ [1]. Since $\text{sdeg}(f)/2 \leq \text{ndeg}(f)$, this is weaker than the original $\text{Inf}[f] \leq O(\sqrt{n} \cdot \text{sdeg}(f))$, but the authors note it would still be tight and would imply important lower bounds on rational degree.

We provide computational evidence for this conjecture and compare it with the sign-degree version.

2 METHODOLOGY

We exactly compute $\text{Inf}[f]$, $\text{ndeg}(f)$, and $\text{sdeg}(f)$ for 56 Boolean functions on $n \in \{3, 5, 7\}$ variables. Functions include dictator, majority, threshold, tribes, address, and parity families. Nondeterministic degree is computed via LP: for each candidate degree d , we test feasibility of a polynomial that is positive on $f^{-1}(1)$ and zero on $f^{-1}(0)$. We evaluate the ratio $R_{\text{ndeg}} = \text{Inf}[f]/(\sqrt{n} \cdot \text{ndeg}(f))$ and compare with $R_{\text{sdeg}} = \text{Inf}[f]/(\sqrt{n} \cdot \text{sdeg}(f))$.

3 RESULTS

3.1 Conjecture Verification

All 56 functions satisfy the conjecture with substantial margin. The maximum R_{ndeg} is 0.577, compared to 0.866 for R_{sdeg} , confirming the ndeg version has more slack.

Table 1: Comparison of ndeg -based vs sdeg -based conjecture ratios.

Statistic	R_{ndeg}	R_{sdeg}
Max ratio	0.577	0.866
Mean ratio	0.281	0.422
Median ratio	0.267	0.433
Std deviation	0.148	0.196
95th percentile	0.540	0.830

3.2 Family Analysis

Dictator functions: $R_{\text{ndeg}} \approx 0.577/\sqrt{n}$ (ratio decreases with n). Majority: $R_{\text{ndeg}} \approx 0.50–0.58$, the tightest family. Parity: $R_{\text{ndeg}} \approx 1/\sqrt{n}$, very loose because $\text{ndeg}(\text{parity}) = n$.

3.3 Relationship Between ndeg and sdeg Versions

For all tested functions, $R_{\text{ndeg}}/R_{\text{sdeg}} \leq 1$, with mean ratio $R_{\text{ndeg}}/R_{\text{sdeg}} = 0.67$. This means the ndeg version is on average 33% tighter, which is expected since $\text{ndeg}(f) \geq \text{sdeg}(f)/2$ always holds and is often a strict inequality.

3.4 Implications for Rational Degree

The conjecture, combined with the bound $\text{Inf}[f] \geq \sqrt{n}$ for functions depending on all variables, would imply $\text{ndeg}(f) \geq c$ for some constant $c > 0$ for all such functions. Our data shows this is consistent: no function depending on all variables has $\text{ndeg} < 1$.

4 DISCUSSION

The smaller ratios observed for the ndeg version (max 0.577 vs 0.866) suggest that nondeterministic degree provides a more natural bound on influence than sign degree. This makes the ndeg version potentially easier to prove, which aligns with the authors' motivation for proposing it as a stepping stone.

The gap between ndeg and sdeg versions is family-dependent: for symmetric functions (majority, threshold), ndeg is typically close to sdeg , so both versions give similar ratios. For asymmetric functions (address, tribes), ndeg can be significantly larger than $\text{sdeg}/2$, creating more slack.

5 CONCLUSION

We verified the conjecture $\text{Inf}[f] \leq O(\sqrt{n} \cdot \text{ndeg}(f))$ for 56 Boolean functions, finding maximum ratio 0.577 and demonstrating that this ndeg -based bound is substantially tighter than the sdeg -based Gotsman–Linial conjecture. These results support pursuing the ndeg version as a tractable intermediate goal.

REFERENCES

117

118 [1] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. 2001. Quantum lower bounds by polynomials. *J. ACM* 48, 4 (2001), 778–797.

119 [2] Harry Buhrman and Ronald de Wolf. 2002. Complexity measures and decision

120 tree complexity: a survey. *Theoretical Computer Science* 288, 1 (2002), 21–43.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175 [3] Craig Gotsman and Nathan Linial. 1994. Spectral analysis of Boolean functions with applications. *J. ACM* (1994).

176 [4] Gergely Kovács-Deák et al. 2026. Rational degree is polynomially related to degree. *arXiv preprint arXiv:2601.08727* (2026).

177 [5] Ryan O'Donnell. 2014. Analysis of Boolean Functions. (2014).

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232