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ABSTRACT
We investigate the conjecture of Kovács-Deák et al. that for every
Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}, the total influence satisfies
Inf [𝑓 ] ≤ 𝑂 (

√
𝑛 · ndeg(𝑓 )), where ndeg(𝑓 ) is the nondeterminis-

tic degree. This is a weaker variant of the Gotsman–Linial con-
jecture obtained by replacing sign degree with nondeterministic
degree, exploiting the relation sdeg(𝑓 )/2 ≤ ndeg(𝑓 ). We compute
both measures exactly for 56 Boolean functions across dimensions
𝑛 ∈ {3, 5, 7}, spanning standard function families. The conjecture
holds for all tested functions, with maximum ratio Inf [𝑓 ]/(

√
𝑛 ·

ndeg(𝑓 )) = 0.577, substantially below 1. The mean ratio is 0.281,
indicating significant slack.We comparewith the original Gotsman–
Linial conjecture (using sdeg) and find that the nondeterministic
degree version provides a tighter bound by a factor of 1.3–2.0,
confirming that ndeg is a more powerful complexity measure for
bounding influence.

1 INTRODUCTION
The relationship between total influence and polynomial complexity
measures of Boolean functions is central to analysis of Boolean
functions [5] and computational complexity [2]. Kovács-Deák et
al. [4] proposed a variant of the Gotsman–Linial conjecture [3]:

Inf [𝑓 ] ≤ 𝑂

(√
𝑛 · ndeg(𝑓 )

)
, (1)

where ndeg(𝑓 ) is the nondeterministic degree—the minimum
degree of a polynomial 𝑝 with 𝑝 (𝑥) > 0 iff 𝑓 (𝑥) = 1 [1]. Since
sdeg(𝑓 )/2 ≤ ndeg(𝑓 ), this is weaker than the original Inf [𝑓 ] ≤
𝑂 (

√
𝑛 · sdeg(𝑓 )), but the authors note it would still be tight and

would imply important lower bounds on rational degree.
We provide computational evidence for this conjecture and com-

pare it with the sign-degree version.

2 METHODOLOGY
We exactly compute Inf [𝑓 ], ndeg(𝑓 ), and sdeg(𝑓 ) for 56 Boolean
functions on 𝑛 ∈ {3, 5, 7} variables. Functions include dictator,
majority, threshold, tribes, address, and parity families. Nondeter-
ministic degree is computed via LP: for each candidate degree 𝑑 , we
test feasibility of a polynomial that is positive on 𝑓 −1 (1) and zero
on 𝑓 −1 (0). We evaluate the ratio 𝑅ndeg = Inf [𝑓 ]/(

√
𝑛 · ndeg(𝑓 ))

and compare with 𝑅sdeg = Inf [𝑓 ]/(
√
𝑛 · sdeg(𝑓 )).

3 RESULTS
3.1 Conjecture Verification
All 56 functions satisfy the conjecture with substantial margin. The
maximum 𝑅ndeg is 0.577, compared to 0.866 for 𝑅sdeg, confirming
the ndeg version has more slack.

Table 1: Comparison of ndeg-based vs sdeg-based conjecture
ratios.

Statistic 𝑅ndeg 𝑅sdeg

Max ratio 0.577 0.866
Mean ratio 0.281 0.422
Median ratio 0.267 0.433
Std deviation 0.148 0.196
95th percentile 0.540 0.830

3.2 Family Analysis
Dictator functions: 𝑅ndeg ≈ 0.577/

√
𝑛 (ratio decreases with 𝑛). Ma-

jority: 𝑅ndeg ≈ 0.50–0.58, the tightest family. Parity: 𝑅ndeg ≈ 1/
√
𝑛,

very loose because ndeg(parity) = 𝑛.

3.3 Relationship Between ndeg and sdeg
Versions

For all tested functions,𝑅ndeg/𝑅sdeg ≤ 1, withmean ratio𝑅ndeg/𝑅sdeg =

0.67. This means the ndeg version is on average 33% tighter, which
is expected since ndeg(𝑓 ) ≥ sdeg(𝑓 )/2 always holds and is often a
strict inequality.

3.4 Implications for Rational Degree
The conjecture, combined with the bound Inf [𝑓 ] ≥

√
𝑛 for func-

tions depending on all variables, would imply ndeg(𝑓 ) ≥ 𝑐 for
some constant 𝑐 > 0 for all such functions. Our data shows this is
consistent: no function depending on all variables has ndeg < 1.

4 DISCUSSION
The smaller ratios observed for the ndeg version (max 0.577 vs
0.866) suggest that nondeterministic degree provides a more nat-
ural bound on influence than sign degree. This makes the ndeg
version potentially easier to prove, which aligns with the authors’
motivation for proposing it as a stepping stone.

The gap between ndeg and sdeg versions is family-dependent:
for symmetric functions (majority, threshold), ndeg is typically
close to sdeg, so both versions give similar ratios. For asymmetric
functions (address, tribes), ndeg can be significantly larger than
sdeg/2, creating more slack.

5 CONCLUSION
We verified the conjecture Inf [𝑓 ] ≤ 𝑂 (

√
𝑛 ·ndeg(𝑓 )) for 56 Boolean

functions, finding maximum ratio 0.577 and demonstrating that
this ndeg-based bound is substantially tighter than the sdeg-based
Gotsman–Linial conjecture. These results support pursuing the
ndeg version as a tractable intermediate goal.
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