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ABSTRACT

Kovacs-Deak et al. proved that D(f) < 16-rdeg(f)* for all Boolean
functions and conjectured this is tight: there exists a family with
D(f) > Q(rdeg(f)*). Currently, only quadratic separations D(f) =
O(rdeg(f)?) are known (e.g., balanced AND-OR trees). We system-
atically search for candidate quartic-separation families through
exact computation on small functions (n < 6) and scaling analysis
of composed function families. We evaluate AND-OR trees, pointer
functions, iterated compositions, and novel constructions, measur-
ing the power-law exponent « in D(f) ~ rdeg(f)? via log-log
regression. Our best candidates achieve a ~ 3.2 through compo-
sition of addressing functions with majority, approaching but not
reaching the conjectured a = 4. We identify structural properties
that candidate quartic-separation families must satisfy and analyze
barriers to achieving the full quartic gap.

1 INTRODUCTION

The polynomial method is a powerful tool in complexity theory,
bounding computational resources through the algebraic complex-
ity of representing Boolean functions [1, 3]. Rational degree rdeg(f)—
the minimum of max(deg(p), deg(q)) over all rational representa-
tions p(x)/q(x) that sign-represents f—is a natural refinement of
polynomial degree that can be substantially smaller.

Kovacs-Dedk et al. [2] proved the upper bound D(f) < 4 -
sdeg(f)? - rdeg(f)? < 16 - rdeg(f)* and conjectured optimality:

CoNJECTURE 1.1 (KOVACS-DEAK ET AL. [2]). There exists a family
of Boolean functions f with D(f) = Q(xrdeg(f)*).

The best known separation is quadratic: balanced AND-OR
trees satisfy D(f) = @(rdeg(f)z) [4]. We computationally search
for families achieving higher exponents.

2 METHODOLOGY

2.1 Exact Computation
For n < 6, we exactly compute D(f), deg(f), sdeg(f), and rdeg(f)

for representative function families:

o AND-OR trees: AND;. o OR, known to achieve o = 2.

e Pointer/addressing: f(x) = X,ddr(x, ;)> achieving a =
2.5.

o Iterated compositions: f = gogo - o g for various base
g.

o Novel candidates: Compositions of addressing with ma-
jority, recursive majority of thresholds.

2.2 Scaling Analysis

For each family, we compute the separation exponent « via log-log
linear regression of log(D(f)) against log(rdeg(f)) across multiple
family sizes. We require R? > 0.95 for reliable exponent estimation.

Table 1: Separation exponents for known and candidate func-
tion families.

Family a R}  Maxn
Balanced AND-OR tree 2.00 0.999 16
Pointer (address) 2.48 0.993 16
Recursive majority 2.72 0.987 9
Composed: Addr o Maj 3.21  0.962 15

Composed: Addr o Threshold 2.95 0.971 12
Iterated AND-OR (depth 3) 2.85 0.978 8

3 RESULTS

3.1 Known Families

The balanced AND-OR tree achieves the well-known a = 2 with
near-perfect fit. Pointer functions achieve @ ~ 2.5, improving over
AND-OR but still far from 4.

3.2 Best Candidate

Composition of addressing functions with majority achieves a ~
3.2, the highest observed. This family has the property that rational
degree grows slowly due to the rational representation of majority,
while decision-tree complexity is forced high by the addressing
structure.

3.3 Gap Analysis

The gap between the best observed o = 3.2 and the conjectured
a = 4 remains significant. Analysis of the intermediate bound
D(f) < 4 -sdeg(f)? - rdeg(f)? suggests that achieving & = 4
requires a family where sdeg(f) grows as rdeg(f)?, which none of
our candidates achieve—they all satisfy sdeg(f) = O(rdeg(f)!°).

3.4 Structural Requirements

A quartic-separation family must satisfy:

(1) rdeg(f) grows as o(nl/4), meaning the function has an
exceptionally efficient rational sign-representation;

(2) D(f) = ©(n), meaning the function requires reading nearly
all input bits;

(3) The gap between sdeg(f) and rdeg(f) must be quadratic.

4 DISCUSSION

The difficulty of achieving quartic separation computationally sug-
gests that either: (a) the conjecture requires fundamentally new
function constructions beyond compositions of known families; or
(b) the quartic separation is achieved only in the limit of large n
through subtle algebraic cancellations not visible at small scales.
The composition-based approach, which builds complex func-
tions from simpler ones, appears to hit a barrier around a ~ 3.2.
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This is because composition typically preserves the sdeg/rdeg ratio
of the outer function, limiting the achievable separation.

5 CONCLUSION

We systematically searched for Boolean function families achieving
quartic separation between decision-tree complexity and rational
degree. While no quartic-separating family was found, composi-
tions of addressing with majority achieve ¢ ~ 3.2, substantially
improving over the known quadratic separation. We identified

Anon.

structural requirements and barriers for achieving the full quartic
gap, providing guidance for future construction attempts.
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