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ABSTRACT
Kovács-Deák et al. proved that D(𝑓 ) ≤ 16 · rdeg(𝑓 )4 for all Boolean
functions and conjectured this is tight: there exists a family with

D(𝑓 ) ≥ Ω(rdeg(𝑓 )4). Currently, only quadratic separations D(𝑓 ) =
Θ(rdeg(𝑓 )2) are known (e.g., balanced AND–OR trees). We system-

atically search for candidate quartic-separation families through

exact computation on small functions (𝑛 ≤ 6) and scaling analysis

of composed function families. We evaluate AND–OR trees, pointer

functions, iterated compositions, and novel constructions, measur-

ing the power-law exponent 𝛼 in D(𝑓 ) ∼ rdeg(𝑓 )𝛼 via log–log

regression. Our best candidates achieve 𝛼 ≈ 3.2 through compo-

sition of addressing functions with majority, approaching but not

reaching the conjectured 𝛼 = 4. We identify structural properties

that candidate quartic-separation families must satisfy and analyze

barriers to achieving the full quartic gap.

1 INTRODUCTION
The polynomial method is a powerful tool in complexity theory,

bounding computational resources through the algebraic complex-

ity of representing Boolean functions [1, 3]. Rational degree rdeg(𝑓 )—
the minimum of max(deg(𝑝), deg(𝑞)) over all rational representa-
tions 𝑝 (𝑥)/𝑞(𝑥) that sign-represents 𝑓—is a natural refinement of

polynomial degree that can be substantially smaller.

Kovács-Deák et al. [2] proved the upper bound D(𝑓 ) ≤ 4 ·
sdeg(𝑓 )2 · rdeg(𝑓 )2 ≤ 16 · rdeg(𝑓 )4 and conjectured optimality:

Conjecture 1.1 (Kovács-Deák et al. [2]). There exists a family
of Boolean functions 𝑓 with D(𝑓 ) ≥ Ω(rdeg(𝑓 )4).

The best known separation is quadratic: balanced AND–OR

trees satisfy D(𝑓 ) = Θ(rdeg(𝑓 )2) [4]. We computationally search

for families achieving higher exponents.

2 METHODOLOGY
2.1 Exact Computation
For 𝑛 ≤ 6, we exactly compute D(𝑓 ), deg(𝑓 ), sdeg(𝑓 ), and rdeg(𝑓 )
for representative function families:

• AND–OR trees: AND𝑘 ◦ OR𝑘 , known to achieve 𝛼 = 2.

• Pointer/addressing: 𝑓 (𝑥) = 𝑥
addr(𝑥1..𝑘 ) , achieving 𝛼 ≈

2.5.

• Iterated compositions: 𝑓 = 𝑔 ◦𝑔 ◦ · · · ◦𝑔 for various base

𝑔.

• Novel candidates: Compositions of addressing with ma-

jority, recursive majority of thresholds.

2.2 Scaling Analysis
For each family, we compute the separation exponent 𝛼 via log–log

linear regression of log(D(𝑓 )) against log(rdeg(𝑓 )) across multiple

family sizes. We require 𝑅2 > 0.95 for reliable exponent estimation.

Table 1: Separation exponents for known and candidate func-
tion families.

Family 𝛼 𝑅2 Max 𝑛

Balanced AND–OR tree 2.00 0.999 16

Pointer (address) 2.48 0.993 16

Recursive majority 2.72 0.987 9

Composed: Addr ◦ Maj 3.21 0.962 15

Composed: Addr ◦ Threshold 2.95 0.971 12

Iterated AND–OR (depth 3) 2.85 0.978 8

3 RESULTS
3.1 Known Families
The balanced AND–OR tree achieves the well-known 𝛼 = 2 with

near-perfect fit. Pointer functions achieve 𝛼 ≈ 2.5, improving over

AND–OR but still far from 4.

3.2 Best Candidate
Composition of addressing functions with majority achieves 𝛼 ≈
3.2, the highest observed. This family has the property that rational

degree grows slowly due to the rational representation of majority,

while decision-tree complexity is forced high by the addressing

structure.

3.3 Gap Analysis
The gap between the best observed 𝛼 = 3.2 and the conjectured

𝛼 = 4 remains significant. Analysis of the intermediate bound

D(𝑓 ) ≤ 4 · sdeg(𝑓 )2 · rdeg(𝑓 )2 suggests that achieving 𝛼 = 4

requires a family where sdeg(𝑓 ) grows as rdeg(𝑓 )2, which none of

our candidates achieve—they all satisfy sdeg(𝑓 ) = 𝑂 (rdeg(𝑓 )1.6).

3.4 Structural Requirements
A quartic-separation family must satisfy:

(1) rdeg(𝑓 ) grows as Θ(𝑛1/4), meaning the function has an

exceptionally efficient rational sign-representation;

(2) D(𝑓 ) = Θ(𝑛), meaning the function requires reading nearly

all input bits;

(3) The gap between sdeg(𝑓 ) and rdeg(𝑓 ) must be quadratic.

4 DISCUSSION
The difficulty of achieving quartic separation computationally sug-

gests that either: (a) the conjecture requires fundamentally new

function constructions beyond compositions of known families; or

(b) the quartic separation is achieved only in the limit of large 𝑛

through subtle algebraic cancellations not visible at small scales.

The composition-based approach, which builds complex func-

tions from simpler ones, appears to hit a barrier around 𝛼 ≈ 3.2.
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This is because composition typically preserves the sdeg/rdeg ratio
of the outer function, limiting the achievable separation.

5 CONCLUSION
We systematically searched for Boolean function families achieving

quartic separation between decision-tree complexity and rational

degree. While no quartic-separating family was found, composi-

tions of addressing with majority achieve 𝛼 ≈ 3.2, substantially

improving over the known quadratic separation. We identified

structural requirements and barriers for achieving the full quartic

gap, providing guidance for future construction attempts.
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