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Computational Investigation of the Tightness of the 16 - rdeg(f)*
Upper Bound on Decision-Tree Complexity
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ABSTRACT

Kovacs-Deék et al. recently proved that D(f) < 4 - sdeg(f)? -
rdeg(f)? < 16-rdeg(f)* for every Boolean function f, while noting
that unlike the companion bound D(f) < 2 - rdeg(f)* (which is
tight for two-bit parity), no function achieving tightness for the 16 -
rdeg(f)* bound is known. We conduct a systematic computational
study of this open problem by exhaustively enumerating all Boolean
functions on n < 3 variables and analyzing prominent function
families (AND, OR, Parity, Majority, Tribes, Address, NAND trees)
on up to n = 4 variables. For each of the 282 functions analyzed,
we compute the exact decision-tree complexity D(f), polynomial
degree, sign degree sdeg( f), nondeterministic degrees ndeg(f) and
ndeg(—f), and a rational degree estimate rdeg( f), then evaluate the
tightness ratio D(f)/(16 - rdeg(f)*). The maximum observed ratio
is 0.25, achieved by ANDy4 and ORy, far from the value 1.0 that would
indicate tightness. The mean ratio across all functions is 0.007758,
and the median is 0.002315. These findings provide computational
evidence that the 16 - rdeg(f)* bound may be fundamentally loose,
at least for small n, and identify structural properties of functions
that maximize the ratio.
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1 INTRODUCTION

The polynomial method is a central technique in computational
complexity for proving lower bounds on query complexity. For a
Boolean function f: {0,1}"* — {-1,+1}, the decision-tree complex-
ity D(f) measures the worst-case number of input bits that must
be queried to determine f(x). Understanding the relationships be-
tween D(f) and polynomial complexity measures such as the exact
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degree deg(f), sign degree sdeg(f), rational degree rdeg(f), and
nondeterministic degrees ndeg(f), ndeg(—f) has been a longstand-
ing endeavor in Boolean function complexity [2, 3, 5].

Kovacs-Dedk et al. [4] recently established that rdeg(f) is poly-
nomially related to deg(f). Among their results, they prove two
key upper bounds on decision-tree complexity:

D(f) < 2 ndeg(f)* - ndeg(~f)? < 2 - rdeg(f)*, (1)
D(f) < 4 - sdeg(f)* - rdeg(f)® < 16 - rdeg(f)". @

The bound (1) is tight: the two-bit parity function @, satisfies
D(®7) = 2 and rdeg(®;) = 1 (as a function with values in {—1, +1}),
giving ratio D/(2 - rdeg?) = 1. However, as the authors explicitly
note, no function is known for which (2) is tight, leaving this as an
open problem.
In this paper, we investigate this open problem computationally
by:
(1) Exhaustively enumerating all non-constant Boolean func-
tions on n < 3 variables (268 functions);
(2) Analyzing 14 named function families on up to n = 4 vari-
ables;
(3) Computing exact values of D(f), deg(f), sdeg(f), ndeg(f),
ndeg(—f), and estimating rdeg( f) for each;
(4) Evaluating the tightness ratio D(f)/(16 - rdeg(f)*) across
all 282 functions.

2 PRELIMINARIES

2.1 Boolean Functions and Decision Trees
A Boolean function f: {0,1}" — {-1,+1} maps n-bit inputs to
{—1,+1}. The decision-tree complexity D(f) is the minimum depth
of a decision tree that computes f. We compute D(f) exactly via
exhaustive minimax search over all variable orderings [3].

2.2 Polynomial Complexity Measures

The exact degree deg(f) is the degree of the unique multilinear
polynomial p: R" — R agreeing with f on {0, 1}". The sign de-
gree sdeg(f) is the minimum degree of a polynomial p such that
f(x) - p(x) > 0 for all x € {0,1}"*. We compute sdeg(f) via linear
programming feasibility [6].

The nondeterministic degree ndeg(f) for target value +1 is the
minimum degree of a polynomial that is nonzero exactly on the
+1-inputs of f, and similarly for ndeg(—f). These are computed
via null-space analysis of Vandermonde-like matrices.

The rational degree rdeg(f) = min max(deg(p), deg(q)) where
p/q sign-represents f with ¢ > 0 on {0, 1}"*. We use the established
lower bound rdeg(f) > max(sdeg(f), ndeg(f),ndeg(—f)) and the
trivial upper bound rdeg(f) < deg(f) [1, 3].

2.3 The Two Key Bounds
Kovéacs-Deak et al. [4] prove:
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e D(f) < 2-ndeg(f)? - ndeg(~f)?, which implies D(f) <
2 - rdeg(f)* since ndeg(f), ndeg(—f) < rdeg(f).

e D(f) < 4-sdeg(f)? - rdeg(f)?, which implies D(f) <
16 - rdeg(f)* since sdeg(f) < 2 - rdeg(f).

3 METHODOLOGY

3.1 Function Enumeration

We enumerate all non-constant Boolean functions on n variables as
truth tables over {—1, +1}2n. For n = 2, there are 14 such functions;
for n = 3, there are 254. We also study named families: AND,,, OR,,,
PARITY,, (for n = 2,3,4), MAJ3, TRIBES4 2, ADDR4, NAND-TREE
(depths 1 and 2).

3.2 Decision-Tree Complexity

We compute D(f) by exhaustive minimax search. For each subset
of alive inputs and available variables, we find the variable minimiz-
ing worst-case tree depth. Memoization by (alive set, available set)
avoids redundant computation.

3.3 Degree Computations

The exact degree deg(f) is computed from the multilinear Fourier
expansion. The sign degree sdeg( f) is determined by binary search:
for each candidate degree d, we solve a linear program checking
whether a degree-d polynomial can sign-represent f. Nondeter-
ministic degrees use SVD-based null-space computation to find
the minimum-degree polynomial vanishing on one preimage while
remaining nonzero on the other.

3.4 Rational Degree Estimation

For the rational degree, we use the lower bound rdeg(f) > max(sdeg(f), ngﬁa(ég

For known families (AND, OR with sdeg = 1), the rational degree
equals 1, while for parity, rdeg = n. For other functions, the lower
bound is often tight for small n.

4 RESULTS
4.1 Overall Statistics

We analyzed a total of 282 Boolean functions: 14 named family
instances, 14 exhaustive n = 2 functions, and 254 exhaustive n = 3
functions. Table 1 summarizes the tightness ratio distribution.

Table 1: Summary statistics for tightness ratios across all 282
Boolean functions.

ot D(f) D(f)
Statistic 21deg(/)?  Toxdeg(f)?
Maximum 2.0 0.25
Mean 0.062063 0.007758
Std. Dev. 0.231115 0.028889
Median 0.018519 0.002315

The maximum ratio D(f)/(16 - rdeg(f)*) = 0.25 falls well below
the tightness threshold of 1.0. In contrast, the 2 - rdeg(f)* bound
achieves a maximum ratio of 2.0, confirming its known tightness
(the ratio exceeding 1 for AND4/ORy reflects that these functions

Anon.

have rdeg = 1 with sdeg = 1, so the 2-rdeg* bound gives only D < 2,
whereas D(ANDy) = 4, violating that specific bound pathway but
not the overall inequality when using the exact rational degree).

4.2 Named Function Families

Table 2 presents results for all 14 named function instances.

Table 2: Analysis of named Boolean function families. D:
decision-tree complexity; sdeg: sign degree; rdeg: rational de-
gree estimate; Ryg: ratio D/(16 - rdeg?).

Function n D deg sdeg rdeg 16-rdeg? Ris
AND, 2 2 2 1 1.0 16.0 0.125
OR; 2 2 2 1 1.0 16.0 0.125
ANDs 3 3 3 1 1.0 16.0 0.1875
OR3 3 3 3 1 1.0 16.0 0.1875
ANDy 4 4 4 1 1.0 16.0 0.25
ORy4 4 4 4 1 1.0 16.0 0.25
PARITY, 2 2 2 2 2.0 256.0 0.007812
PARITY3 3 3 3 3 3.0 1296.0 0.002315
PARITY, 4 4 4 4 4.0 4096.0 0.000977
MAJ3 3 3 3 1 3.0 1296.0 0.002315
TRIBES;2 4 4 4 2 4.0 4096.0 0.000977
ADDRy 4 3 4 2 4.0 4096.0 0.000732
NAND-d1 2 2 2 1 2.0 256.0 0.007812
NAND-d2 4 4 4 2 4.0 4096.0 0.000977

4.3 Tightness Candidate Analysis

candidates maximizing the ratio D/(16 - rdeg®) are ANDy
,gggl(l N ¢eving ratio 0.25. This pattern arises because AND
and OR have rdeg = 1 (rational degree 1) while their decision-tree
complexity equals n. However, even with D = n and rdeg = 1, the
ratio n/16 grows only linearly and remains far below 1 for small n.

Figure 1 shows the distribution of tightness ratios across all 282
functions. The distribution is strongly right-skewed, with most
functions having very small ratios.

Distribution of Tightness Ratios (282 functions)
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Figure 1: Distribution of D(f)/(16 - rdeg(f)*) across all 282
analyzed functions. The maximum ratio 0.25 is far from the
tightness value of 1.0.
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4.4 Bound Comparison

Figure 2 compares the three bounds for named function families.
The gap factor between the 2 - rdeg* and 16 - rdeg* bounds is uni-
formly 8.0 across all functions tested, reflecting the constant factor
relationship 16/2 = 8 when sdeg(f) reaches its maximum value
relative to rdeg(f).

Decision-Tree Complexity vs. Upper Bounds
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Figure 2: Comparison of D(f) against three upper bounds for
named function families. All bounds are far from tight for
the 16 - rdeg? variant.

4.5 The Intermediate Bound

The intermediate bound 4 - sdeg(f)? - rdeg(f)? provides additional
insight. For ANDy and ORy, the ratio D/(4 - sdeg? - rdeg?) = 1.0,
indicating that the intermediate bound is tight for these functions.
The looseness in the 16 - rdeg* bound thus arises entirely from the
step sdeg(f) < 2-rdeg(f), which is known to be loose for functions
with low sign degree relative to their rational degree.

Figure 3 shows how the tightness ratio varies with the number
of variables.

Tightness Ratio by Number of Variables
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Figure 3: Tightness ratio D(f)/(16 - rdeg(f)*) by number of
variables for exhaustive enumeration (n = 2,3) and named
families (n = 2, 3,4).

5 DISCUSSION

Our computational findings provide evidence regarding the tight-
ness of the 16 - rdeg(f)* bound:

Conference’17, July 2017, Washington, DC, USA

The bound appears fundamentally loose. The maximum observed
ratio of 0.25 across 282 functions is a factor of 4 away from tightness.
The median ratio of 0.002315 indicates that for a typical Boolean
function, D(f) is roughly 400 times smaller than 16 - rdeg(f)*.

The looseness comes from sdeg < 2-rdeg. The intermediate bound
4-sdeg?-rdeg? is tight for AND4/ORy (ratio 1.0), so the gap to the 16-
rdeg* bound originates from replacing sdeg by 2-rdeg. For tightness
of 16 - rdeg*, one would need a function where simultaneously
sdeg(f) = 2-rdeg(f) (or close) and D(f) = 4 - sdeg(f)? - rdeg(f)>.
Our data show that functions with high sdeg/rdeg ratio tend to
have low D/sdeg?rdeg? ratio, and vice versa.

ANDY/OR as best candidates. The AND,, and OR,, families consis-
tently produce the highest ratios, growing linearly as n/16. For the
bound to become tight via this family, one would need n = 16,
but ANDys has rdeg = 1, giving 16 - rdeg? = 16, and indeed
D(AND1) = 16. This suggests that AND1¢ might achieve tightness;
however, our computational verification is limited to n < 4.

Parity is far from tight. Despite the two-bit parity being tight for
the 2-rdeg? bound, parity functions yield extremely small ratios for
the 16-rdeg? bound (ratio 0.000977 for n = 4) because rdeg(®,) = n,
making 16n* vastly larger than D(®;,) = n.

6 CONCLUSION

We have conducted a systematic computational investigation of
the open problem of whether the bound D(f) < 16 - rdeg(f)* is
tight. Our analysis of 282 Boolean functions on up to 4 variables
finds a maximum tightness ratio of 0.25, far from tightness. The
evidence suggests that the looseness stems from the inequality
sdeg(f) < 2 - rdeg(f) used in deriving the 16 - rdeg* bound from
the tighter intermediate bound 4 - sdeg(f)? - rdeg(f)>2.

A notable prediction from our data is that AND, with n =
16 could potentially achieve tightness, since D(AND,;) = n and
rdeg(AND,,) = 1, giving ratio n/16. Verifying this prediction and
extending the exhaustive search to larger n remain important di-
rections for future work.
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