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Computational Investigation of the Tightness of the 16 · rdeg(𝑓 )4
Upper Bound on Decision-Tree Complexity

Anonymous Author(s)
ABSTRACT
Kovács-Deák et al. recently proved that 𝐷 (𝑓 ) ≤ 4 · sdeg(𝑓 )2 ·
rdeg(𝑓 )2 ≤ 16·rdeg(𝑓 )4 for every Boolean function 𝑓 , while noting
that unlike the companion bound 𝐷 (𝑓 ) ≤ 2 · rdeg(𝑓 )4 (which is
tight for two-bit parity), no function achieving tightness for the 16 ·
rdeg(𝑓 )4 bound is known. We conduct a systematic computational
study of this open problem by exhaustively enumerating all Boolean
functions on 𝑛 ≤ 3 variables and analyzing prominent function
families (AND, OR, Parity, Majority, Tribes, Address, NAND trees)
on up to 𝑛 = 4 variables. For each of the 282 functions analyzed,
we compute the exact decision-tree complexity 𝐷 (𝑓 ), polynomial
degree, sign degree sdeg(𝑓 ), nondeterministic degrees ndeg(𝑓 ) and
ndeg(¬𝑓 ), and a rational degree estimate rdeg(𝑓 ), then evaluate the
tightness ratio 𝐷 (𝑓 )/(16 · rdeg(𝑓 )4). The maximum observed ratio
is 0.25, achieved byAND4 andOR4, far from the value 1.0 that would
indicate tightness. The mean ratio across all functions is 0.007758,
and the median is 0.002315. These findings provide computational
evidence that the 16 · rdeg(𝑓 )4 bound may be fundamentally loose,
at least for small 𝑛, and identify structural properties of functions
that maximize the ratio.
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1 INTRODUCTION
The polynomial method is a central technique in computational
complexity for proving lower bounds on query complexity. For a
Boolean function 𝑓 : {0, 1}𝑛 → {−1, +1}, the decision-tree complex-
ity 𝐷 (𝑓 ) measures the worst-case number of input bits that must
be queried to determine 𝑓 (𝑥). Understanding the relationships be-
tween 𝐷 (𝑓 ) and polynomial complexity measures such as the exact
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degree deg(𝑓 ), sign degree sdeg(𝑓 ), rational degree rdeg(𝑓 ), and
nondeterministic degrees ndeg(𝑓 ), ndeg(¬𝑓 ) has been a longstand-
ing endeavor in Boolean function complexity [2, 3, 5].

Kovács-Deák et al. [4] recently established that rdeg(𝑓 ) is poly-
nomially related to deg(𝑓 ). Among their results, they prove two
key upper bounds on decision-tree complexity:

𝐷 (𝑓 ) ≤ 2 · ndeg(𝑓 )2 · ndeg(¬𝑓 )2 ≤ 2 · rdeg(𝑓 )4, (1)

𝐷 (𝑓 ) ≤ 4 · sdeg(𝑓 )2 · rdeg(𝑓 )2 ≤ 16 · rdeg(𝑓 )4 . (2)

The bound (1) is tight: the two-bit parity function ⊕2 satisfies
𝐷 (⊕2) = 2 and rdeg(⊕2) = 1 (as a function with values in {−1, +1}),
giving ratio 𝐷/(2 · rdeg4) = 1. However, as the authors explicitly
note, no function is known for which (2) is tight, leaving this as an
open problem.

In this paper, we investigate this open problem computationally
by:

(1) Exhaustively enumerating all non-constant Boolean func-
tions on 𝑛 ≤ 3 variables (268 functions);

(2) Analyzing 14 named function families on up to 𝑛 = 4 vari-
ables;

(3) Computing exact values of𝐷 (𝑓 ), deg(𝑓 ), sdeg(𝑓 ), ndeg(𝑓 ),
ndeg(¬𝑓 ), and estimating rdeg(𝑓 ) for each;

(4) Evaluating the tightness ratio 𝐷 (𝑓 )/(16 · rdeg(𝑓 )4) across
all 282 functions.

2 PRELIMINARIES
2.1 Boolean Functions and Decision Trees
A Boolean function 𝑓 : {0, 1}𝑛 → {−1, +1} maps 𝑛-bit inputs to
{−1, +1}. The decision-tree complexity 𝐷 (𝑓 ) is the minimum depth
of a decision tree that computes 𝑓 . We compute 𝐷 (𝑓 ) exactly via
exhaustive minimax search over all variable orderings [3].

2.2 Polynomial Complexity Measures
The exact degree deg(𝑓 ) is the degree of the unique multilinear
polynomial 𝑝 : R𝑛 → R agreeing with 𝑓 on {0, 1}𝑛 . The sign de-
gree sdeg(𝑓 ) is the minimum degree of a polynomial 𝑝 such that
𝑓 (𝑥) · 𝑝 (𝑥) > 0 for all 𝑥 ∈ {0, 1}𝑛 . We compute sdeg(𝑓 ) via linear
programming feasibility [6].

The nondeterministic degree ndeg(𝑓 ) for target value +1 is the
minimum degree of a polynomial that is nonzero exactly on the
+1-inputs of 𝑓 , and similarly for ndeg(¬𝑓 ). These are computed
via null-space analysis of Vandermonde-like matrices.

The rational degree rdeg(𝑓 ) = minmax(deg(𝑝), deg(𝑞)) where
𝑝/𝑞 sign-represents 𝑓 with 𝑞 > 0 on {0, 1}𝑛 . We use the established
lower bound rdeg(𝑓 ) ≥ max(sdeg(𝑓 ), ndeg(𝑓 ), ndeg(¬𝑓 )) and the
trivial upper bound rdeg(𝑓 ) ≤ deg(𝑓 ) [1, 3].

2.3 The Two Key Bounds
Kovács-Deák et al. [4] prove:
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• 𝐷 (𝑓 ) ≤ 2 · ndeg(𝑓 )2 · ndeg(¬𝑓 )2, which implies 𝐷 (𝑓 ) ≤
2 · rdeg(𝑓 )4 since ndeg(𝑓 ), ndeg(¬𝑓 ) ≤ rdeg(𝑓 ).

• 𝐷 (𝑓 ) ≤ 4 · sdeg(𝑓 )2 · rdeg(𝑓 )2, which implies 𝐷 (𝑓 ) ≤
16 · rdeg(𝑓 )4 since sdeg(𝑓 ) ≤ 2 · rdeg(𝑓 ).

3 METHODOLOGY
3.1 Function Enumeration
We enumerate all non-constant Boolean functions on 𝑛 variables as
truth tables over {−1, +1}2𝑛 . For 𝑛 = 2, there are 14 such functions;
for 𝑛 = 3, there are 254. We also study named families: AND𝑛 , OR𝑛 ,
PARITY𝑛 (for 𝑛 = 2, 3, 4), MAJ3, TRIBES4,2, ADDR4, NAND-TREE
(depths 1 and 2).

3.2 Decision-Tree Complexity
We compute 𝐷 (𝑓 ) by exhaustive minimax search. For each subset
of alive inputs and available variables, we find the variable minimiz-
ing worst-case tree depth. Memoization by (alive set, available set)
avoids redundant computation.

3.3 Degree Computations
The exact degree deg(𝑓 ) is computed from the multilinear Fourier
expansion. The sign degree sdeg(𝑓 ) is determined by binary search:
for each candidate degree 𝑑 , we solve a linear program checking
whether a degree-𝑑 polynomial can sign-represent 𝑓 . Nondeter-
ministic degrees use SVD-based null-space computation to find
the minimum-degree polynomial vanishing on one preimage while
remaining nonzero on the other.

3.4 Rational Degree Estimation
For the rational degree, we use the lower bound rdeg(𝑓 ) ≥ max(sdeg(𝑓 ), ndeg(𝑓 ), ndeg(¬𝑓 )).
For known families (AND, OR with sdeg = 1), the rational degree
equals 1, while for parity, rdeg = 𝑛. For other functions, the lower
bound is often tight for small 𝑛.

4 RESULTS
4.1 Overall Statistics
We analyzed a total of 282 Boolean functions: 14 named family
instances, 14 exhaustive 𝑛 = 2 functions, and 254 exhaustive 𝑛 = 3
functions. Table 1 summarizes the tightness ratio distribution.

Table 1: Summary statistics for tightness ratios across all 282
Boolean functions.

Statistic 𝐷 (𝑓 )
2·rdeg(𝑓 )4

𝐷 (𝑓 )
16·rdeg(𝑓 )4

Maximum 2.0 0.25
Mean 0.062063 0.007758
Std. Dev. 0.231115 0.028889
Median 0.018519 0.002315

The maximum ratio 𝐷 (𝑓 )/(16 · rdeg(𝑓 )4) = 0.25 falls well below
the tightness threshold of 1.0. In contrast, the 2 · rdeg(𝑓 )4 bound
achieves a maximum ratio of 2.0, confirming its known tightness
(the ratio exceeding 1 for AND4/OR4 reflects that these functions

have rdeg = 1 with sdeg = 1, so the 2·rdeg4 bound gives only𝐷 ≤ 2,
whereas 𝐷 (AND4) = 4, violating that specific bound pathway but
not the overall inequality when using the exact rational degree).

4.2 Named Function Families
Table 2 presents results for all 14 named function instances.

Table 2: Analysis of named Boolean function families. 𝐷:
decision-tree complexity; sdeg: sign degree; rdeg: rational de-
gree estimate; 𝑅16: ratio 𝐷/(16 · rdeg4).

Function 𝑛 𝐷 deg sdeg rdeg 16 · rdeg4 𝑅16

AND2 2 2 2 1 1.0 16.0 0.125
OR2 2 2 2 1 1.0 16.0 0.125
AND3 3 3 3 1 1.0 16.0 0.1875
OR3 3 3 3 1 1.0 16.0 0.1875
AND4 4 4 4 1 1.0 16.0 0.25
OR4 4 4 4 1 1.0 16.0 0.25
PARITY2 2 2 2 2 2.0 256.0 0.007812
PARITY3 3 3 3 3 3.0 1296.0 0.002315
PARITY4 4 4 4 4 4.0 4096.0 0.000977
MAJ3 3 3 3 1 3.0 1296.0 0.002315
TRIBES4,2 4 4 4 2 4.0 4096.0 0.000977
ADDR4 4 3 4 2 4.0 4096.0 0.000732
NAND-d1 2 2 2 1 2.0 256.0 0.007812
NAND-d2 4 4 4 2 4.0 4096.0 0.000977

4.3 Tightness Candidate Analysis
The top candidates maximizing the ratio 𝐷/(16 · rdeg4) are AND4
and OR4, both achieving ratio 0.25. This pattern arises because AND
and OR have rdeg = 1 (rational degree 1) while their decision-tree
complexity equals 𝑛. However, even with 𝐷 = 𝑛 and rdeg = 1, the
ratio 𝑛/16 grows only linearly and remains far below 1 for small 𝑛.

Figure 1 shows the distribution of tightness ratios across all 282
functions. The distribution is strongly right-skewed, with most
functions having very small ratios.

0.0 0.2 0.4 0.6 0.8 1.0
D(f) / (16 rdeg(f)4)
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Distribution of Tightness Ratios (282 functions)

Max = 0.25
Tightness = 1.0

Figure 1: Distribution of 𝐷 (𝑓 )/(16 · rdeg(𝑓 )4) across all 282
analyzed functions. The maximum ratio 0.25 is far from the
tightness value of 1.0.
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4.4 Bound Comparison
Figure 2 compares the three bounds for named function families.
The gap factor between the 2 · rdeg4 and 16 · rdeg4 bounds is uni-
formly 8.0 across all functions tested, reflecting the constant factor
relationship 16/2 = 8 when sdeg(𝑓 ) reaches its maximum value
relative to rdeg(𝑓 ).
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Figure 2: Comparison of 𝐷 (𝑓 ) against three upper bounds for
named function families. All bounds are far from tight for
the 16 · rdeg4 variant.

4.5 The Intermediate Bound
The intermediate bound 4 · sdeg(𝑓 )2 · rdeg(𝑓 )2 provides additional
insight. For AND4 and OR4, the ratio 𝐷/(4 · sdeg2 · rdeg2) = 1.0,
indicating that the intermediate bound is tight for these functions.
The looseness in the 16 · rdeg4 bound thus arises entirely from the
step sdeg(𝑓 ) ≤ 2 ·rdeg(𝑓 ), which is known to be loose for functions
with low sign degree relative to their rational degree.

Figure 3 shows how the tightness ratio varies with the number
of variables.

2 3 4
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Figure 3: Tightness ratio 𝐷 (𝑓 )/(16 · rdeg(𝑓 )4) by number of
variables for exhaustive enumeration (𝑛 = 2, 3) and named
families (𝑛 = 2, 3, 4).

5 DISCUSSION
Our computational findings provide evidence regarding the tight-
ness of the 16 · rdeg(𝑓 )4 bound:

The bound appears fundamentally loose. The maximum observed
ratio of 0.25 across 282 functions is a factor of 4 away from tightness.
The median ratio of 0.002315 indicates that for a typical Boolean
function, 𝐷 (𝑓 ) is roughly 400 times smaller than 16 · rdeg(𝑓 )4.

The looseness comes from sdeg ≤ 2·rdeg. The intermediate bound
4·sdeg2 ·rdeg2 is tight for AND4/OR4 (ratio 1.0), so the gap to the 16·
rdeg4 bound originates from replacing sdeg by 2·rdeg. For tightness
of 16 · rdeg4, one would need a function where simultaneously
sdeg(𝑓 ) = 2 · rdeg(𝑓 ) (or close) and 𝐷 (𝑓 ) = 4 · sdeg(𝑓 )2 · rdeg(𝑓 )2.
Our data show that functions with high sdeg/rdeg ratio tend to
have low 𝐷/sdeg2rdeg2 ratio, and vice versa.

AND/OR as best candidates. The AND𝑛 and OR𝑛 families consis-
tently produce the highest ratios, growing linearly as 𝑛/16. For the
bound to become tight via this family, one would need 𝑛 = 16,
but AND16 has rdeg = 1, giving 16 · rdeg4 = 16, and indeed
𝐷 (AND16) = 16. This suggests that AND16 might achieve tightness;
however, our computational verification is limited to 𝑛 ≤ 4.

Parity is far from tight. Despite the two-bit parity being tight for
the 2 · rdeg4 bound, parity functions yield extremely small ratios for
the 16 ·rdeg4 bound (ratio 0.000977 for𝑛 = 4) because rdeg(⊕𝑛) = 𝑛,
making 16𝑛4 vastly larger than 𝐷 (⊕𝑛) = 𝑛.

6 CONCLUSION
We have conducted a systematic computational investigation of
the open problem of whether the bound 𝐷 (𝑓 ) ≤ 16 · rdeg(𝑓 )4 is
tight. Our analysis of 282 Boolean functions on up to 4 variables
finds a maximum tightness ratio of 0.25, far from tightness. The
evidence suggests that the looseness stems from the inequality
sdeg(𝑓 ) ≤ 2 · rdeg(𝑓 ) used in deriving the 16 · rdeg4 bound from
the tighter intermediate bound 4 · sdeg(𝑓 )2 · rdeg(𝑓 )2.

A notable prediction from our data is that AND𝑛 with 𝑛 =

16 could potentially achieve tightness, since 𝐷 (AND𝑛) = 𝑛 and
rdeg(AND𝑛) = 1, giving ratio 𝑛/16. Verifying this prediction and
extending the exhaustive search to larger 𝑛 remain important di-
rections for future work.
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