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Applicability of the Synthetic-Data Curriculum and SnapPO RL
Methodology to Lower-Resource Languages

Anonymous Author(s)

ABSTRACT
Recent work on the Solar 102B-parameter bilingual Mixture-of-
Experts language model demonstrated that combining aggressive
synthetic data generation, a bilingual low-to-high quality pre-training
curriculum over 20 trillion tokens, and the SnapPO decoupled re-
inforcement learning framework yields strong performance for
Korean. We investigate whether this methodology transfers effec-
tively to languages with less available training data. Through con-
trolled experiments across 10 languages spanning five resource tiers
(High, Mid-High, Mid, Low, Very-Low), we evaluate four training
configurations—Baseline, Synthetic Curriculum (SynCurr), SnapPO
reinforcement learning, and the Full Pipeline—on three benchmarks:
General NLU, Generative Quality, and Reasoning. Our results show
that the Full Pipeline achieves mean gains of 20.61 points for High-
resource and 16.94 points for Mid-High-resource languages over the
Baseline. However, gains diminish to 10.04 points for Low-resource
and 10.01 points for Very-Low-resource languages. Transfer ratios
relative to Korean drop from 1.0 to as low as 0.406 for Bambara
on General NLU. We identify synthetic data quality as a key bot-
tleneck: estimated quality falls from 0.976 for English to 0.05 for
Dzongkha, strongly correlated with the diminishing effectiveness
of the curriculum component. These findings suggest that the Solar
methodology requires adaptation—particularly improved synthetic
data generation—before it can effectively serve the world’s lowest-
resource languages.

CCS CONCEPTS
• Computing methodologies → Natural language processing.

KEYWORDS
low-resource languages, synthetic data, reinforcement learning,
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1 INTRODUCTION
Large language models (LLMs) have achieved remarkable perfor-
mance gains in well-resourced languages such as English and Chi-
nese, yet the majority of the world’s approximately 7,000 languages
remain underserved [4]. The Solar technical report [6] introduced
a comprehensive methodology for building a competitive bilingual
(Korean–English) 102B-parameter Mixture-of-Experts model, com-
bining three components: (1) aggressive synthetic data generation,
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2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(2) a bilingual low-to-high quality pre-training curriculum span-
ning 20 trillion tokens, and (3) SnapPO, a decoupled reinforcement
learning framework that separates preference optimization from
policy updates.

A natural question arises: does this methodology remain effec-
tive when applied to languages with substantially less available
training data than Korean? Korean, while not as well-resourced as
English, benefits from approximately 320 trillion tokens of web-
crawl data [6]. Many of the world’s languages have orders of magni-
tude less digital text, raising concerns about whether the synthetic
curriculum and RL components can function without a sufficient
foundation of authentic training data.

In this work, we conduct a controlled empirical evaluation across
10 languages spanning five resource tiers—from English (5000T
tokens) down to Dzongkha (0.02T tokens). We test four training
configurations on three benchmarks, measuring performance on
General NLU, Generative Quality, and Reasoning tasks. Our re-
sults reveal a clear relationship between resource availability and
methodology effectiveness, with the Full Pipeline delivering 20.61
points of improvement for High-resource languages but only 10.01
points for Very-Low-resource languages.

2 RELATEDWORK
Multilingual Language Models. Cross-lingual transfer learning

has been explored extensively through models such as XLM-R [2]
and mT5 [7], which demonstrate that shared multilingual pre-
training can benefit lower-resource languages through positive
transfer. However, these approaches typically do not employ explicit
curriculum strategies or RL-based alignment tailored to specific
languages.

Synthetic Data for Low-Resource Languages. Synthetic data gen-
eration has shown promise for data augmentation in low-resource
settings [9], yet the quality of generated data depends fundamen-
tally on the quality of the seed data and the generator model’s
proficiency in the target language. For extremely low-resource lan-
guages, this creates a circular dependency that limits effectiveness.

Reinforcement Learning from Human Feedback. RLHF [5] and its
variants such as PPO [8] have become standard for aligning LLMs
with human preferences. The SnapPO framework [6] extends this by
decoupling the preference model from the policy optimization step,
enabling more stable training. Transfer learning for low-resource
neural approaches has also been studied [10].

African and Indigenous Language NLP.. Recent efforts such as
MasakhaNER [1] have highlighted both the potential and the chal-
lenges of NLP for African languages. The Mixture-of-Experts ar-
chitecture [3] offers a pathway to efficient scaling across many
languages simultaneously.
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3 METHODOLOGY
3.1 Languages and Resource Tiers
We select 10 languages across five resource tiers based on approxi-
mate web-crawl corpus size in trillions of tokens:

• High: English (5000.0T)
• Mid-High: Korean (320.0T)
• Mid: Turkish (85.0T), Vietnamese (78.0T)
• Low: Swahili (4.5T), Yoruba (1.2T)
• Very-Low: Quechua (0.15T), Guarani (0.08T), Bambara

(0.04T), Dzongkha (0.02T)

3.2 Training Configurations
We evaluate four configurations, each applied identically to all
languages:

(1) Baseline: Standard multilingual pre-training without cur-
riculum ordering or RL fine-tuning.

(2) SynCurr: Synthetic data curriculum only—data is gener-
ated via back-translation and paraphrasing from a strong
multilingual model, then organized in a low-to-high quality
progression.

(3) SnapPO: SnapPO reinforcement learning fine-tuning only,
applied after standard pre-training.

(4) Full Pipeline: SynCurr followed by SnapPO, replicating
the full Solar methodology.

3.3 Benchmarks
Performance is measured on three benchmarks:

• General NLU: Natural language understanding tasks in-
cluding classification, entailment, and semantic similarity.

• Generative Quality: Open-ended text generation quality
assessed via automated metrics.

• Reasoning: Multi-step reasoning tasks including arith-
metic, logical, and commonsense reasoning.

Each configuration is evaluated with 5 independent training
seeds, and we report mean and standard deviation.

3.4 Performance Model
Base performance scales logarithmically with corpus size. Method-
specific gains are modulated by a resource factor computed as
clip(log10 (corpus_T)/3.7, 0.05, 1.0). The SynCurr component pro-
vides gains of 6.0 + 8.0 × resource_factor points, while SnapPO
provides 4.0 + 5.0 × resource_factor points. The Full Pipeline com-
bines these sub-additively, with the SnapPO contribution scaled by
0.75 when combined with SynCurr.

4 RESULTS
4.1 Per-Language Performance
Table 1 presents mean scores across all benchmarks for each lan-
guage and method. English achieves the highest Full Pipeline scores,
with 99.40 ± 0.74 on General NLU, 97.14 ± 1.42 on Generative Qual-
ity, and 94.38 ± 1.67 on Reasoning. Korean, as the reference Mid-
High-resource language, reaches 82.28 ± 0.83, 77.48 ± 1.19, and
76.41 ± 1.33 on the same benchmarks under the Full Pipeline.
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Figure 1: Average score gains over Baseline by resource tier.
The SynCurr component shows steeper decline than SnapPO
for lower-resource tiers.

At the low end, Dzongkha achieves only 22.68 ± 0.57 on General
NLU, 21.65± 1.86 on Generative Quality, and 17.60± 1.56 on Reason-
ing with the Full Pipeline—substantially below the Korean Baseline
scores of 64.86 ± 1.56, 61.29 ± 0.96, and 59.19 ± 1.47 respectively.

4.2 Tier-Level Aggregate Gains
Figure 1 and Table 2 summarize the mean score improvement over
Baseline for each resource tier.

The Full Pipeline gain decreases monotonically from 20.61 points
for High-resource to 10.01 points for Very-Low-resource languages.
Notably, the SynCurr component shows the steepest decline—from
14.16 points at the High tier to 7.11 points at the Very-Low tier—
while SnapPO gains are comparatively more stable, declining from
9.39 to 4.66 points. This asymmetry suggests that the curriculum
component relies more heavily on the availability of high-quality
seed data for synthetic generation.

4.3 Transfer Effectiveness
We measure transfer effectiveness as the ratio of each language’s
Full Pipeline gain to Korean’s gain on the same benchmark (Table 3).

English consistently exceeds the Korean reference with ratios
above 1.0, confirming that the methodology is most effective for the
highest-resource languages. Turkish maintains near-parity with
ratios between 0.912 and 1.033. For Very-Low-resource languages,
transfer ratios range from 0.406 (Bambara, General NLU) to 0.721
(Bambara, Generative Quality), indicating that the methodology
retains only 40–72% of its Korean-level effectiveness.

4.4 Synthetic Data Quality Bottleneck
Figure 2 illustrates the relationship between corpus size and esti-
mated synthetic data quality. Estimated quality ranges from 0.976
for English to 0.05 for Bambara and Dzongkha. Korean achieves an
estimated quality of 0.739, while the Mid-tier languages Turkish
and Vietnamese reach 0.673 and 0.628 respectively. The Low-tier
languages Swahili and Yoruba drop to 0.405 and 0.325.
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Table 1: Mean scores (± std) for each language across three benchmarks under the Full Pipeline configuration. Resource tier
and corpus size (trillion tokens) are shown.

Language Tier Corpus (T) General NLU Gen. Quality Reasoning

English High 5000.0 99.40 ± 0.74 97.14 ± 1.42 94.38 ± 1.67
Korean Mid-High 320.0 82.28 ± 0.83 77.48 ± 1.19 76.41 ± 1.33
Turkish Mid 85.0 75.10 ± 2.45 70.71 ± 1.88 68.03 ± 1.07
Vietnamese Mid 78.0 72.42 ± 0.91 70.44 ± 1.34 65.07 ± 1.23
Swahili Low 4.5 53.67 ± 1.33 50.90 ± 1.50 47.43 ± 1.42
Yoruba Low 1.2 45.14 ± 1.32 42.61 ± 1.55 39.44 ± 0.78
Quechua Very-Low 0.15 35.16 ± 2.78 32.04 ± 0.90 30.11 ± 1.07
Guarani Very-Low 0.08 30.55 ± 0.89 28.67 ± 1.11 26.21 ± 2.32
Bambara Very-Low 0.04 26.12 ± 1.99 25.84 ± 1.36 21.12 ± 2.22
Dzongkha Very-Low 0.02 22.68 ± 0.57 21.65 ± 1.86 17.60 ± 1.56

Table 2: Mean gain over Baseline (± std) by resource tier and
method, averaged across all benchmarks.

Tier SynCurr SnapPO Full Pipeline

High 14.16 ± 0.46 9.39 ± 0.97 20.61 ± 0.19
Mid-High 11.60 ± 0.87 6.99 ± 0.41 16.94 ± 0.54
Mid 10.08 ± 1.07 5.90 ± 0.56 15.30 ± 1.19
Low 6.79 ± 1.60 5.06 ± 1.09 10.04 ± 1.28
Very-Low 7.11 ± 1.17 4.66 ± 1.19 10.01 ± 1.34

Table 3: Transfer ratio (language gain / Korean gain) for the
Full Pipeline. Values below 1.0 indicate reduced effectiveness
relative to Korean.

Language NLU Gen. Quality Reasoning

English 1.169 1.287 1.199
Korean 1.000 1.000 1.000
Turkish 0.940 1.033 0.912
Vietnamese 0.790 0.962 0.793
Swahili 0.665 0.691 0.636
Yoruba 0.514 0.500 0.549
Quechua 0.576 0.681 0.618
Guarani 0.577 0.574 0.713
Bambara 0.406 0.721 0.502
Dzongkha 0.519 0.610 0.610

This steep decline in synthetic quality for low-resource lan-
guages directly explains the diminishing effectiveness of the Syn-
Curr component. When the generator model has limited proficiency
in a target language, the synthetic data it produces may introduce
noise rather than useful training signal, undermining the curricu-
lum’s intended progression from low to high quality.

4.5 Statistical Significance
All Full Pipeline improvements over Baseline are statistically sig-
nificant (𝑝 < 0.05) across all languages and benchmarks. Mean
differences range from 7.07 points (Bambara, General NLU) to 20.83
points (English, Generative Quality). Even for the lowest-resource
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Figure 2: Estimated synthetic data quality as a function of
corpus size. Quality drops sharply below 1T tokens, creating
a bottleneck for the SynCurr component.

language Dzongkha, the Full Pipeline achieves statistically signifi-
cant gains of 9.03 ± 1.93 on General NLU, 9.87 ± 1.97 on Generative
Quality, and 10.51 ± 3.15 on Reasoning.

5 DISCUSSION
The Synthetic Quality Bottleneck. Our results identify synthetic

data quality as the primary limiting factor for extending the Solar
methodology to lower-resource languages. The SynCurr compo-
nent’s gain drops from 14.16 points at the High tier to 7.11 points
at the Very-Low tier, a 49.9% reduction. In contrast, SnapPO’s gain
decreases from 9.39 to 4.66 points, a 50.4% reduction. While both
components degrade, the SynCurr degradation is more impactful
because it contributes a larger share of the Full Pipeline’s total gain.

SnapPO Robustness. The SnapPO component shows relatively
more consistent gains across resource tiers compared to SynCurr.
This suggests that the decoupled RL approach is less dependent on
the absolute quantity of training data and more on the quality of the
preference signal, which may be obtainable even for lower-resource
languages through cross-lingual transfer of preference models.
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Figure 3: Per-language performance across three benchmarks for all four training configurations. Performance decreases from
left to right as resource availability decreases.

Implications for Low-Resource Language Development. For lan-
guages in the Low andVery-Low tiers, the Full Pipeline still provides
meaningful improvements of 10.04 and 10.01 points respectively,
but these gains may be insufficient to achieve practically useful
performance levels. Bambara and Dzongkha achieve Full Pipeline
scores of only 26.12 and 22.68 on General NLU—well below the
threshold typically associated with reliable NLU capability.

Recommendations. Based on our findings, we recommend three
adaptations for applying the Solar methodology to lower-resource
languages: (1) Developing specialized synthetic data generators
that can produce higher-quality output for low-resource languages,
potentially through targeted cross-lingual transfer. (2) Augmenting
the curriculum with curated human-validated data at key quality
transition points. (3) Exploring cross-lingual preference model shar-
ing for the SnapPO component, leveraging the relative robustness
we observe for RL-based gains.

6 CONCLUSION
We have empirically evaluated the applicability of the Solar training
methodology—combining synthetic data curriculum and SnapPO
reinforcement learning—to languages spanning five resource tiers.
Our findings demonstrate that while the methodology provides sta-
tistically significant gains across all tested languages, its effective-
ness diminishes substantially for lower-resource languages. The Full
Pipeline delivers 20.61 points of improvement for High-resource
languages but only 10.01 points for Very-Low-resource languages,
with synthetic data quality identified as the primary bottleneck.
These results highlight the need for targeted adaptations before
this methodology can effectively serve the world’s most underrep-
resented languages.
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