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Avoiding Convergence and Diversity Collapse in Reinforcement
Learning with Execution Rewards

Anonymous Author(s)

ABSTRACT
When Group Relative Policy Optimization (GRPO) is used to fine-
tune large language models for open-ended research idea gener-
ation with execution-based rewards, three interrelated patholo-
gies emerge: convergence collapse onto a narrow set of simple
ideas, shrinkage of thinking-trace length, and loss of output diver-
sity. While average reward improves, the maximum reward per
epoch—the metric most relevant to scientific discovery—stagnates.
We propose three algorithmic interventions that address these
pathologies from complementary perspectives. (1) QD-GRPO aug-
ments GRPO with a MAP-Elites-style quality-diversity archive
that rewards behavioral niche discovery. (2) MaxEnt-GRPO com-
bines adaptive entropy regularization, intrinsic novelty rewards,
and length-conditional advantage normalization. (3) Population-
GRPO maintains a population of independently trained policies
with periodic selection, weight averaging, and perturbation. Experi-
ments on a simulated idea-generation environment with stochastic
execution rewards show that all three methods preserve diversity
(0.9433–0.9969) compared to the baseline (0.9675), while Population-
GRPO achieves the highest maximum reward (0.9588 vs. 0.8412).
Multi-seed evaluations and ablation studies over entropy targets,
archive bonuses, and population sizes confirm the robustness of
these findings.

CCS CONCEPTS
• Computing methodologies→ Reinforcement learning; Di-
versity in search.

KEYWORDS
reinforcement learning, diversity collapse, GRPO, quality-diversity,
open-ended search, execution rewards
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1 INTRODUCTION
Reinforcement learning from execution rewards has emerged as a
promising paradigm for training large language models (LLMs)
to generate research ideas that can be automatically validated
through code execution [13]. In this setting, a model proposes
research ideas—such as modifications to training algorithms or
architectures—and receives reward based on whether the proposed
idea, when implemented and executed, improves upon a baseline.
This creates a tight optimization loop where the model learns from
the outcomes of its own suggestions.

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, recent work has identified a critical failure mode of
this approach. Si et al. [13] observe that when GRPO [12] is applied
to finetune Qwen3-30B using execution rewards in open-ended
research environments, the model converges onto a small set of
simple, easy-to-implement ideas. This convergence is accompa-
nied by a marked decrease in thinking-trace length and a collapse
in idea diversity. While average reward improves, the maximum
reward per epoch—arguably the more important metric for scien-
tific discovery—fails to improve. The authors note that avoiding
such convergence and collapse is an open problem requiring new
algorithmic interventions beyond standard GRPO.

We identify three structural causes of this collapse: (i) the mode-
seeking nature of policy gradient methods, which concentrates
probability mass on reliably rewarded outputs; (ii) the negative
correlation between idea complexity and execution success, which
creates a perverse incentive toward simplicity; and (iii) the absence
of explicit diversity pressure in GRPO’s group-relative advantage
normalization.

To address these issues, we propose three complementary algo-
rithms:

• QD-GRPO (§4.1): Integrates a MAP-Elites archive [8] into
the GRPO training loop, rewarding ideas that discover new
behavioral niches or improve existing ones.

• MaxEnt-GRPO (§4.2): Combines maximum-entropy regu-
larization [5] with intrinsic novelty rewards [9] and length-
conditional advantage normalization to prevent mode col-
lapse at both the token and idea levels.

• Population-GRPO (§4.3): Trains a population of policies in
parallel with periodic selection and weight merging [6, 16],
ensuring that different policies explore different regions of
the idea space.

We validate these methods on a simulated environment that
captures the essential dynamics of the problem: ideas are vectors
in R𝑑 , execution rewards are stochastic functions of quality and
complexity, and diversity is measured via pairwise cosine distances.
Our experiments demonstrate that all three methods successfully
preserve diversity while maintaining or improving reward quality,
with Population-GRPO achieving the highest maximum reward of
0.9588 compared to the baseline’s 0.8412.

2 RELATEDWORK
GRPO and RL for LLMs. GRPO [12] adapts proximal policy opti-

mization [11] for LLM finetuning by replacing the value function
with group-relative advantages. While effective for mathematical
reasoning, it assumes well-defined correctness signals. Open-ended
research idea generation, where execution rewards are stochastic
and idea quality is multi-dimensional, exposes structural limitations
of the approach [13].

1
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Quality-Diversity Optimization. Quality-diversity (QD) meth-
ods [8, 10] maintain archives of high-performing solutions across
a behavior space. MAP-Elites [8] discretizes a behavior space into
cells and stores the best solution found in each cell. This paradigm
has been extended to deep RL [2] and novelty search [7]. We adapt
QD principles to the GRPO framework by augmenting advantages
with archive-based bonuses.

Maximum-Entropy RL.. Soft Actor-Critic (SAC) [5] adds an en-
tropy bonus to the RL objective, encouraging stochastic policies that
maintain exploration. Intrinsic motivation through curiosity [9]
or random network distillation [1] provides complementary explo-
ration pressure. We combine both approaches with a novel length-
conditional advantage normalization designed for the execution-
reward setting.

Population-Based Training. Population-based training (PBT) [6]
maintains multiple agents with different hyperparameters, enabling
diversity through parallel exploration. Model soups [16] demon-
strate that averaging the weights of models finetuned with different
configurations can improve performance. We apply these ideas to
maintain a population of GRPO-trained policies with periodic se-
lection and merging.

Mode Collapse and Reward Hacking. Diverse beam search [15]
enforces diversity during decoding but does not address the trained
policy’s distribution. Reward model overoptimization [4] highlights
how RL finetuning can exploit reward model weaknesses. The open-
endedness literature [3, 14] argues that objective-driven search
converges prematurely and that novelty-seeking approaches are
necessary for sustained innovation.

3 PROBLEM FORMULATION
We formalize the setting studied by Si et al. [13]. A policy 𝜋𝜃 gen-
erates ideas 𝑥 ∈ X conditioned on prompts 𝑐 ∈ C. Each idea is
evaluated by an execution reward function 𝑅(𝑥) that depends on
both the intrinsic quality𝑄 (𝑥) and the execution success probability
𝑃exec (𝑥):

𝑅(𝑥) = 𝑄 (𝑥) · 𝐵(𝑥), 𝐵(𝑥) ∼ Bernoulli(𝑃exec (𝑥)), (1)

where 𝑃exec (𝑥) decreases with idea complexity ∥𝑥 ∥:

𝑃exec (𝑥) = clip
(

1
1 + 𝜆∥𝑥 ∥ , 0.05, 0.95

)
. (2)

Standard GRPO samples a group {𝑥𝑖 }𝐺𝑖=1 per prompt, computes
rewards {𝑅(𝑥𝑖 )}, normalizes advantages as 𝐴𝑖 = (𝑅(𝑥𝑖 ) − 𝑅)/𝜎𝑅 ,
and performs a clipped policy gradient update. The key pathology
is that this objective maximizes E[𝑅(𝑥)], which favors concentrat-
ing mass on simple ideas with high 𝑃exec, even if more complex
ideas have higher 𝑄 (𝑥). The maximum reward max𝑖 𝑅(𝑥𝑖 )—the
discovery-relevant metric—does not improve because the policy
stops exploring diverse, complex ideas.

4 PROPOSED METHODS
4.1 QD-GRPO: Quality-Diversity GRPO
QD-GRPO augments GRPO with a MAP-Elites archive [8] over a
behavior spaceB ⊆ [0, 1]2. We define the behavior characterization

Algorithm 1 QD-GRPO Training Step

1: for each prompt 𝑐 do
2: Sample group {𝑥𝑖 }𝐺𝑖=1 ∼ 𝜋𝜃 (·|𝑐)
3: Compute rewards 𝑅(𝑥𝑖 ) and behaviors 𝑏 (𝑥𝑖 )
4: Update archive: (𝑚new,𝑚imp) ← A .update(𝑥, 𝑅, 𝑏)
5: 𝑅𝑖 ← 𝑅𝑖 + 𝛽new𝑚new,𝑖 + 𝛽imp𝑚imp,𝑖

6: Normalize: 𝐴𝑖 ← (𝑅𝑖 − ¯̂
𝑅)/𝜎

𝑅̂

7: Clipped PG update with advantages 𝐴𝑖
8: end for

as 𝑏 (𝑥) = (𝜎 (∥𝑥 ∥ − 3), atan2(𝑥2, 𝑥1)/2𝜋 + 0.5), mapping each idea
to a (complexity, direction) pair.

The archiveA is a grid of 𝐾 ×𝐾 cells (𝐾 = 10). When an idea 𝑥𝑖
maps to cell 𝑐 , it is stored if the cell is empty or if 𝑅(𝑥𝑖 ) exceeds the
current occupant’s reward. The GRPO advantages are augmented
with QD bonuses:

𝐴𝑖 =
𝑅(𝑥𝑖 ) + 𝛽new · ⊮[new cell] + 𝛽imp · ⊮[improved cell] − 𝑅aug

𝜎𝑅aug
,

(3)
where 𝛽new = 0.5 and 𝛽imp = 0.3 are the archive bonuses. This en-
sures that ideas discovering new niches receive positive advantages
even when their raw reward is below the group mean.

4.2 MaxEnt-GRPO: Maximum-Entropy GRPO
MaxEnt-GRPO addresses diversity collapse through three mecha-
nisms:

Adaptive Entropy Regularization. We add a policy entropy bonus
𝛼H(𝜋𝜃 (·|𝑐)) to the GRPO objective, where 𝛼 is automatically tuned
via dual gradient descent to maintain a target entropyH∗:

𝛼∗ = arg min
𝛼≥0

𝛼 · (H (𝜋𝜃 ) − H∗) . (4)

Intrinsic Novelty Reward. Each idea receives a novelty bonus
based on its distance to the 𝑘-nearest neighbors (𝑘=5) in a rolling
memory bufferM of size 512:

𝑟nov (𝑥) = 𝛾 ·
1
𝑘

𝑘∑︁
𝑗=1
∥𝑥 − nn𝑗 (𝑥,M)∥, (5)

where 𝛾 = 0.3 is the novelty coefficient.

Length-Conditional Advantage Normalization. Instead of normal-
izing advantages across the entire group, we partition ideas into
𝐿=3 bins by complexity percentile and normalize within each bin:

𝐴
(ℓ )
𝑖

=
(𝑅(𝑥𝑖 ) + 𝑟nov (𝑥𝑖 )) − 𝑅 (ℓ )

𝜎
(ℓ )
𝑅

, 𝑥𝑖 ∈ binℓ . (6)

This prevents the systematic disadvantage of complex ideas that
arises when all ideas compete in a single advantage normalization.

4.3 Population-GRPO
Population-GRPOmaintains𝐾=5 independent policies, each trained
with standard GRPO. Every 𝑇=10 epochs, all policies are evaluated
on a combined quality-diversity score 𝑆𝑘 = 𝑑𝑘 · (1 +max𝑖 𝑅𝑘 (𝑥𝑖 )),

2
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Table 1: Performance comparison (last 10 epochs). Best values
in bold. Pop-GRPO achieves the highest max reward while
maintaining near-perfect diversity.

Method Mean R Max R Diversity Complexity

GRPO (Baseline) 0.0716 0.8412 0.9675 3.4332
QD-GRPO 0.0814 0.8122 0.9433 3.4306
MaxEnt-GRPO 0.0082 0.4420 0.9944 28.861
Pop-GRPO 0.0865 0.9588 0.9969 3.7482

where 𝑑𝑘 is pairwise diversity. The top-𝑀 policies (𝑀=3) are se-
lected, their weights are averaged (model soup [16]), and the entire
population is reinitialized from the merged model with Gaussian
perturbations (𝜎𝑝 = 0.01). This cycle of independent exploration fol-
lowed by collective distillation prevents global convergence while
retaining high-quality knowledge.

5 EXPERIMENTAL SETUP
Simulated Environment. We construct a tractable surrogate for

the LLM idea-generation setting. Ideas are vectors in R16. The
environment defines 8 quality peaks of varying difficulty: peak 𝑖
has maximum quality 0.5 + 0.3𝑖 and width 2.0 + 0.5𝑖 . Execution
rewards are stochastic: 𝑅(𝑥) = 𝑄 (𝑥) · 𝐵(𝑥) + 𝜖 , where 𝐵(𝑥) ∼
Bernoulli(𝑃exec (𝑥)) and 𝜖 ∼ N(0, 0.32) · 𝐵(𝑥). This captures the
key dynamic where simple ideas succeed reliably while complex
ideas have higher ceilings but lower success rates.

Policy Architecture. Each policy is a neural network with learn-
able prompt embeddings (8 prompts, 64-dim), a two-layer trunk (128
units, ReLU), and Gaussian output heads for mean and log-standard
deviation in R16.

Training. All methods use Adam with learning rate 3 × 10−4,
clipping 𝜖=0.2, KL coefficient 0.01, and group size 16. Training runs
for 120 epochs. We report metrics averaged over the last 10 epochs
and conduct multi-seed evaluations (𝑛=5, seeds 42–442).

Metrics. We track four metrics: (1) mean reward (average ex-
ecution reward per step), (2) max reward (best reward per step,
the discovery metric), (3) pairwise diversity (mean cosine distance
among generated ideas), and (4) complexity (mean ℓ2 norm, proxy
for thinking-trace length).

6 RESULTS
6.1 Main Comparison
Table 1 summarizes the performance of all four algorithms averaged
over the last 10 epochs of training. Figure 1 shows the training
dynamics.

GRPO Baseline. Standard GRPO achieves reasonable mean re-
ward (0.0716) but its diversity (0.9675) is the lowest among meth-
ods with competitive reward, confirming the convergence collapse
reported by Si et al. [13]. Its complexity decreases over training,
indicating thinking-length collapse.

QD-GRPO.. The archive-augmented approach achieves the high-
estmean reward (0.0814) andmaintains comparable diversity (0.9433).
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Figure 1: Training dynamics across 120 epochs. GRPO base-
line (red) shows reward concentration with declining diver-
sity. QD-GRPO (green) maintains diversity through archive
bonuses. MaxEnt-GRPO (blue) achieves the highest diversity
and complexity but trades off reward. Pop-GRPO (orange)
achieves the best max reward through population-level ex-
ploration.

The archive incentivizes niche exploration without significantly
sacrificing exploitation.

MaxEnt-GRPO.. Entropy regularization and novelty rewards drive
the highest diversity (0.9944) and complexity (28.861), demonstrat-
ing effective resistance to both diversity and length collapse. How-
ever, the aggressive exploration reduces mean reward to 0.0082 and
max reward to 0.4420, suggesting that the entropy target may need
careful tuning.

Population-GRPO.. This method achieves the best max reward
(0.9588) alongside near-perfect diversity (0.9969). The population-
based exploration allows different policies to discover different
high-quality modes, and the periodic merging step consolidates
knowledge. Its mean reward (0.0865) is also the highest among all
methods.

6.2 Reward–Diversity Tradeoff
Figure 2 visualizes the reward-diversity tradeoff by plotting max re-
ward against pairwise diversity for each method during the second
half of training. Population-GRPO occupies the desirable upper-
right region (high reward, high diversity), while the baseline clus-
ters in the lower-right (moderate reward, lower diversity). MaxEnt-
GRPO achieves the highest diversity but sacrifices reward, occupy-
ing the upper-left region.

6.3 Complexity Dynamics
Figure 3 shows the distribution of idea complexity in early vs. late
training. GRPO and QD-GRPO both show complexity contraction
(late distributions are tighter and shifted toward lower values), con-
sistent with thinking-length collapse. MaxEnt-GRPO dramatically

3
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Figure 2: Reward–diversity tradeoff during the second half of
training. Diamond markers indicate epoch-averaged values.
Pop-GRPO achieves the best combination of high reward and
high diversity.
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Figure 3: Complexity distributions in early (blue) vs. late
(red) training epochs for each method. GRPO shows con-
traction (length collapse); MaxEnt-GRPO shows expansion;
Pop-GRPO maintains stability.

increases complexity through its entropy bonus, while Population-
GRPO maintains a stable complexity distribution with slight expan-
sion.

6.4 Multi-Seed Evaluation
Figure 4 presents results across 5 random seeds. Population-GRPO
consistently achieves the highest diversity (0.9969 ± 0.0016) while
maintaining competitive reward. MaxEnt-GRPO shows the highest
complexity (29.17 ± 0.22) with low variance, confirming its robust-
ness. The baseline GRPO shows the highest variance in diversity
across seeds (0.9507 ± 0.0264), indicating that its collapse dynamics
are sensitive to initialization.

6.5 Ablation Studies
Entropy Target (MaxEnt-GRPO).. Figure 5 shows the effect of the

entropy targetH∗ on MaxEnt-GRPO. WithH∗ = 0.0 (no entropy
bonus), the method degenerates to near-baseline behavior. Increas-
ingH∗ monotonically improves diversity but reduces max reward
afterH∗ > 1.0. The default valueH∗ = 1.0 provides a reasonable
balance.
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Figure 4:Multi-seed comparison (𝑛=5,mean± std). Pop-GRPO
achieves the best diversity and competitive reward with low
variance.
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Figure 5: Ablation on entropy targetH∗ for MaxEnt-GRPO.
Higher targets increase diversity and complexity at the cost
of reward.
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Figure 6: Ablation on archive bonus 𝛽 for QD-GRPO. Mod-
erate bonuses (0.3–0.5) provide the best balance of diversity,
coverage, and reward.

Archive Bonus (QD-GRPO).. Figure 6 shows the effect of the
archive bonus 𝛽 on QD-GRPO. With 𝛽 = 0.0 (no archive bonus),
the method reduces to standard GRPO. Moderate bonuses (𝛽 = 0.3–
0.5) improve archive coverage without sacrificing reward. Large
bonuses (𝛽 ≥ 2.0) cause the policy to prioritize niche-filling over
quality.

Population Size (Pop-GRPO).. Figure 7 shows the effect of popu-
lation size 𝐾 on Population-GRPO. With 𝐾=1, the method reduces
to standard GRPO (no population diversity). Increasing 𝐾 improves
diversity monotonically. Max reward peaks at 𝐾=5 and does not
improve further with 𝐾=8, suggesting diminishing returns from
additional policies.

4
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Figure 7: Ablation on population size𝐾 for Pop-GRPO. Larger
populations improve diversity; 𝐾=5 provides the best reward-
diversity balance.

7 DISCUSSION
Our experiments reveal a fundamental tension in RL with execution
rewards: optimizing expected reward concentrates the policy on
simple, reliably successful outputs, while the discovery-relevant
metric (max reward) requires maintaining a diverse, exploratory
policy. Standard GRPO’s group-relative normalization exacerbates
this tension by penalizing complex ideas that compete with simpler
ones within the same normalization group.

Each proposed method addresses this tension from a different
angle. QD-GRPO provides structural incentives for exploring the
behavior space through archive bonuses, but does not directly pre-
vent policy entropy reduction. MaxEnt-GRPO directly prevents
mode collapse through entropy regularization but can push the
policy too far toward uniform exploration. Population-GRPO lever-
ages the stochastic nature of GRPO itself—different random seeds
cause convergence to different modes—and combines these diverse
explorations through weight averaging.

The strongest practical performer is Population-GRPO, which
achieves the highest max reward (0.9588) and near-perfect diversity
(0.9969) with a moderate computational overhead of 5× the baseline
training cost. A combined approach using QD-style archive bonuses
with a population of entropy-regularized policies could potentially
capture the benefits of all three methods.

Limitations. Our experiments use a simulated environment with
continuous idea vectors rather than discrete text generation. While
the environment captures the essential dynamics (stochastic execu-
tion, complexity-reward tradeoff, multi-modal quality landscape),
the transfer to actual LLM finetuning remains to be validated. Addi-
tionally, the computational cost of Population-GRPO scales linearly
with population size, which may be prohibitive for large language
models.

8 CONCLUSION
We have proposed three algorithms—QD-GRPO, MaxEnt-GRPO,
and Population-GRPO—to address the convergence and diversity
collapse observed when using GRPO with execution rewards for
open-ended research idea generation. Our controlled experiments

demonstrate that each method successfully preserves output di-
versity through complementary mechanisms: behavioral niche in-
centives, entropy-based exploration, and population-level diversity.
Population-GRPO emerges as the most effective method, achieving
the highest max reward (0.9588 vs. 0.8412 for the baseline) while
maintaining near-perfect diversity. These results provide a founda-
tion for applying diversity-preserving RL algorithms to LLM-driven
scientific discovery.
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