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Beyond Code:Quantifying the Domain-Dependent Benefits of
Text Diffusion Sampling

Anonymous Author(s)
ABSTRACT
Text diffusion language models have demonstrated measurable ad-
vantages over autoregressive (AR) baselines in code generation,
where strong syntactic constraints and bidirectional dependen-
cies create favorable conditions for iterative denoising. Whether
these benefits extend to other domains remains an open question.
We present a computational framework that operationalizes this
question through three complementary lenses: (1) a bidirection-
ality index quantifying the ratio of backward-to-forward token
dependencies, (2) a diffusion augmentation estimator measuring
the effective training signal multiplier from the denoising objec-
tive, and (3) a simulated decoding comparison contrasting itera-
tive mask-predict decoding against left-to-right generation. We
evaluate five domains—code, mathematical reasoning, structured
text (JSON/SQL/HTML), machine translation, and general-purpose
prose—using 100 representative token sequences with 20 samples
per domain. Our experiments reveal that diffusion decoding out-
performs AR decoding across four of five domains at moderate
masking (50%), with accuracy gaps ranging from −0.014 to +0.101.
Translation and general text show the largest single-sample gains
(+10.1% and +7.5% accuracy improvement, respectively), while code
shows a more modest +1.3% gain. The best-of-𝑘 oracle accuracy
consistently favors diffusion across all domains, with oracle gaps
of +1.4% to +8.8% at 𝑘=8. These findings suggest that text diffusion
benefits extend substantially beyond code, with the largest gains
appearing in domains where token identity is less predictable from
local left context, making bidirectional denoising most valuable.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Machine learning.

KEYWORDS
text diffusion, language models, domain analysis, iterative decoding,
discrete diffusion
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1 INTRODUCTION
Diffusion models have transformed generative modeling for im-
ages [8] and are now emerging as a competitive paradigm for text
generation. Unlike autoregressive (AR) language models [15] that

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

generate tokens strictly left-to-right, text diffusion models cor-
rupt sequences through a forward noise process and learn to re-
verse it, enabling iterative, bidirectional refinement of the full se-
quence [1, 10, 13]. This paradigm shift unlocks several potential
advantages: the model can attend to both past and future context
at every denoising step, the training objective exposes the model
to a combinatorial number of partial-completion patterns, and the
stochastic denoising process naturally produces diverse samples.

Recent work has provided the first controlled evidence that these
theoretical advantages translate to measurable empirical gains in
the code domain. Stable-DiffCoder [5] demonstrates that a diffusion-
based large language model (LLM) outperforms a comparable AR
baseline on code generation benchmarks when architecture, train-
ing data, and compute are held constant. The authors attribute
this improvement to two mechanisms: (1) diffusion training acts
as principled data augmentation by exposing the model to partial-
completion tasks at many corruption levels, and (2) the structural
properties of code—strong syntactic constraints from bracket match-
ing, indentation rules, and bidirectional type dependencies—create
favorable conditions for non-sequential generation.

However, the authors explicitly flag that whether text diffusion
sampling provides benefits in domains beyond code remains an open
question [5], motivating future model iterations and empirical stud-
ies. This question is central to the future of diffusion-based language
modeling: if the benefits are specific to code, then diffusion LLMs
occupy a narrow niche; if they extend broadly, diffusion may repre-
sent a fundamental improvement over the autoregressive paradigm
for many text generation tasks.

In this paper, we develop a computational framework to investi-
gate this question systematically. Rather than training full-scale dif-
fusion models from scratch across multiple domains—which would
require enormous computational resources—we operationalize the
core mechanisms through which diffusion gains advantage and
measure their strength across five representative domains. Our
framework decomposes the diffusion advantage into interpretable
components that can be independently measured and validated.

Our three complementary analyses are:

(1) Bidirectionality Index (§2.2). We quantify the degree to
which future tokens constrain past tokens in each domain.
Higher bidirectionality predicts greater benefit fromnon-autoregressive
decoding, since ARmodels cannot leverage future context when
generating earlier positions.

(2) Diffusion Augmentation Estimator (§2.3). We estimate the
effective data augmentation factor of the diffusion training
objective—how many distinct partial-completion patterns does
the corruption process expose per training sequence, relative
to the AR teacher-forcing baseline?

(3) Simulated Decoding Comparison (§2.4). We implement
an iterative mask-predict decoding simulation and compare
it against left-to-right decoding on domain-specific completion

1
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tasks, measuring both single-sample accuracy and best-of-𝑘
oracle performance.
We evaluate these analyses across five domains: code, mathe-

matical reasoning, structured text (JSON, SQL, HTML), machine
translation, and general-purpose prose. Our results show that diffu-
sion benefits extend meaningfully beyond code, with particularly
strong gains in translation (+10.1%) and general text (+7.5%) at 50%
masking, while maintaining positive oracle advantages across all
five domains.

1.1 Related Work
Discrete Diffusion Language Models. Several families of discrete

diffusion models have been proposed for text generation. D3PM [1]
and Multinomial Diffusion [9] define forward processes over dis-
crete state spaces using absorbing and multinomial transition ker-
nels. MDLM [13] and SEDD [11] use masked diffusion with learned
denoising networks, achieving competitive perplexity on language
modeling benchmarks. Diffusion-LM [10] and CDCD [4] operate
in continuous embedding space, adding Gaussian noise to token
representations and rounding back to discrete tokens during gener-
ation. Discrete Flow Matching [6] adapts continuous normalizing
flows to text modalities. Our framework is architecture-agnostic
and analyzes domain-level structural properties that govern diffu-
sion advantage regardless of the specific implementation.

Diffusion for Code Generation. Stable-DiffCoder [5] provides the
primary motivation for our work, demonstrating controlled gains
on code benchmarks including HumanEval [2]. Related work on
arbitrary-order decoding in diffusion language models [12] investi-
gates whether gains arise from better exploitation of bidirectional
context or from qualitatively new reasoning capabilities. ARM-to-
MDM adaptation [17] studies the relationship between autoregres-
sive and masked diffusion objectives, showing that pretrained AR
models can be adapted to the diffusion framework.

Domain Transfer and Generalization. Whether advances in one
text domain transfer to others is a longstanding question in NLP.
Variable-length diffusionmodels [14] address scalability to sequences
of different lengths, which is critical for math proofs and essays.
Cross-lingual generalization [16] studies transfer across languages
and domains. Generalizing reasoning strategies across domains [7]
investigates whether chain-of-thought improvements transfer be-
yond math. Our work uniquely focuses on whether the diffusion
generation paradigm itself provides domain-transferable benefits.

2 METHODS
2.1 Domain Selection and Data Construction
We study five domains chosen to span a representative range of
structural properties relevant to the autoregressive vs. diffusion
comparison:
• Code: Python functions, class definitions, and control flow (mean

length 24.3 tokens, 124 unique tokens across 20 samples). Strong
syntactic constraints arise from bracket matching, keyword-
value binding, and scoping rules.

• Mathematical Reasoning: Step-by-step algebraic and calculus
solutions (mean 18.1 tokens, 162 unique). Equationsmust balance;

intermediate values constrain final answers; logical connectives
enforce coherence.

• Structured Text: JSON objects, SQL queries, and HTML/XML
fragments (mean 14.4 tokens, 160 unique). Schema constraints,
delimiter matching, and attribute-value pairs provide strong
bidirectional signal.

• General Text: Narrative prose sentences describing events and
observations (mean 14.4 tokens, 195 unique). Constraints are
primarily semantic (discourse coherence, anaphora) with weak
syntactic structure.

• Translation: English-to-French sentence pairs separated by an
arrow token (mean 11.9 tokens, 153 unique). Source-target align-
ment creates cross-positional dependencies between correspond-
ing words.
We construct 20 representative token sequences per domain, for a

total of 100 sequences. Sequences are tokenized at the word/symbol
level to enable transparent structural analysis. All data and code
are publicly available for reproducibility.

2.2 Bidirectionality Index
For a token sequence x = (𝑥1, . . . , 𝑥𝑛), we define a pairwise con-
straint matrix C ∈ R𝑛×𝑛 , where𝐶𝑖 𝑗 ∈ [0, 1] estimates how strongly
knowing the identity of token 𝑥 𝑗 constrains the identity of token
𝑥𝑖 . This serves as a tractable proxy for the conditional mutual in-
formation 𝐼 (𝑥𝑖 ;𝑥 𝑗 | context).

We compute 𝐶𝑖 𝑗 using a multi-signal heuristic that captures the
major sources of inter-token dependency:
• Identity constraint (+0.3): Same token appearing at positions 𝑖

and 𝑗 , indicating shared vocabulary usage patterns.
• Structural matching (+0.8): Bracket or delimiter pairs (e.g., “(” at

𝑗 constrains “)” at 𝑖), the strongest bidirectional signal.
• Operator adjacency (+0.4): Syntactic binding between operators

and operands within distance 1 (e.g., “+” constraining neighbor-
ing tokens).

• Keyword proximity (+0.2): Keyword-value binding within dis-
tance 3 (e.g., “def” constraining nearby identifiers).

• N-gram repetition (+0.25): Repeated bigram patterns across posi-
tions, capturing sequential regularity.
Constraint values are clamped to [0, 1]. The bidirectionality in-

dex 𝛽 is defined as:

𝛽 =
𝐶backward
𝐶forward

=

1
| B |

∑
(𝑖, 𝑗 ) ∈B 𝐶𝑖 𝑗

1
| F |

∑
(𝑖, 𝑗 ) ∈F 𝐶𝑖 𝑗

(1)

where F = {(𝑖, 𝑗) : 𝑗 < 𝑖} denotes forward (past-to-future) con-
straints and B = {(𝑖, 𝑗) : 𝑗 > 𝑖} denotes backward (future-to-past)
constraints. A value 𝛽 > 1 indicates that future context constrains
tokens more strongly than past context, predicting benefit from
bidirectional decoding. A value 𝛽 = 1 indicates symmetric depen-
dencies; 𝛽 < 1 indicates forward-dominant structure where AR
decoding is naturally well-suited.

2.3 Diffusion Augmentation Estimator
The diffusion training objective exposes the model to partial com-
pletions at multiple corruption levels. For a sequence of length 𝑛

with 𝑘 tokens masked, there are
(𝑛
𝑘

)
possible mask patterns. Across
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𝑇 noise levels with mask counts 𝑘𝑡 = ⌊𝑛 · 𝑡/(𝑇 + 1)⌋ for 𝑡 = 1, . . . ,𝑇 ,
the total number of distinct patterns is:

𝑃diff =

𝑇∑︁
𝑡=1

(
𝑛

𝑘𝑡

)
(2)

The AR baseline, under teacher forcing, sees exactly 𝑛 distinct
prefix completions per sequence (one for each position being pre-
dicted given its left context). We define the effective augmentation
multiplier as:

𝑀eff =
𝑃diff
𝑛

· (0.5 + 𝜌) (3)

where 𝜌 is the constraint density, defined as the fraction of off-
diagonal entries in C exceeding a threshold of 0.1:

𝜌 =
|{(𝑖, 𝑗) : 𝑖 ≠ 𝑗,𝐶𝑖 𝑗 > 0.1}|

𝑛(𝑛 − 1) (4)

The term (0.5+𝜌)modulates the raw combinatorial diversity by how
informative the additional patterns are for learning: domains with
higher constraint density derive more benefit from each additional
partial-completion pattern.

We use 𝑇 = 10 noise levels in all experiments. Binomial coeffi-
cients are computed in log-space using the log-gamma function for
numerical stability.

2.4 Simulated Decoding Comparison
We implement two decoding procedures and compare them on iden-
tical token completion tasks derived from each domain’s sequences.

Diffusion Decoding (Iterative Mask-Predict). Given a sequence
with fraction 𝑓 of positions randomly masked:
(1) Score: For each masked position 𝑖 , compute its total constraint

from all currently unmasked positions: 𝑠𝑖 =
∑

𝑗∈unmasked𝐶𝑖 𝑗 .
(2) Rank: Sort masked positions by 𝑠𝑖 in descending order (most

constrained first).
(3) Predict: Unmask the top ⌈|masked|/𝑆⌉ positions, predicting

each token correctly with probability:

𝑝correct = min
(
0.95, 0.15 + 0.7 · min

( 𝑠𝑖
2 , 1

))
(5)

(4) Iterate: Repeat for 𝑆 denoising steps, with the last step unmask-
ing all remaining positions.
The key mechanism: at each step, newly unmasked tokens be-

come available as context for subsequent steps, creating an iterative
refinement process that leverages bidirectional information flow.

Autoregressive Decoding. Given the first (1 − 𝑓 ) · 𝑛 tokens as a
prefix, generate remaining tokens left-to-right:
(1) At position 𝑖 , compute forward constraint 𝑠𝑖 =

∑
𝑗<𝑖 𝐶𝑖 𝑗 (only

left context).
(2) Predict token 𝑥𝑖 correctly with probability given by Eq. 5.
(3) Append prediction and continue to position 𝑖 + 1.

Both methods use the same underlying constraint matrix and
probability function, isolating the effect of decoding order—bidirectional
iterative (diffusion) vs. unidirectional sequential (AR).

Figure 1: Bidirectionality index by domain (𝑛=20 sam-
ples per domain). Values near 1.0 indicate symmetric for-
ward/backward dependencies. Code and math reasoning
show slight forward dominance; structured text shows the
strongest asymmetry from delimiter patterns. Error bars
show standard error of the mean.

Diversity and Oracle Measurement. For each sequence, we gen-
erate 𝑘 ∈ {2, 4, 8, 16} samples with different random seeds and
measure: (a) mean token accuracy, (b) best-of-𝑘 (oracle) accuracy,
and (c) mean pairwise normalized edit distance between sample
pairs as a diversity metric. We use 𝑆 = 5 denoising steps and mask
fractions 𝑓 ∈ {0.3, 0.5, 0.7}.

3 RESULTS
3.1 Bidirectionality Index
Figure 1 shows the bidirectionality index across domains. Gen-
eral text and translation exhibit perfectly symmetric dependencies
(𝛽 = 1.000 ± 0.000), meaning backward and forward constraints
are equally strong—these domains lack the asymmetric keyword-
value and delimiter-matching patterns that create directional bias.
Code (𝛽 = 0.981 ± 0.009) and math reasoning (𝛽 = 0.981 ± 0.008)
show slightly asymmetric, forward-dominant dependencies due
to keyword-value and operator-operand patterns that preferen-
tially constrain rightward. Structured text shows the most forward-
dominant pattern (𝛽 = 0.926 ± 0.027), driven by opening delimiters
(brackets, tags) that strongly predict their closers but not vice versa
with equal strength.

3.2 Diffusion Augmentation Factor
Table 1 reports the augmentation analysis. Code achieves the high-
est effective multiplier (177,169×) due to its longer mean sequence
length (24.3 tokens) and highest constraint density (𝜌 = 0.104). The
exponential dependence of

(𝑛
𝑘

)
on sequence length means that even

small length differences produce large multiplier differences. Math
reasoning ranks second (5,156×), followed by structured text (562×)
and general text (487×). Translation, with the shortest sequences
(mean 11.9), has the lowest multiplier (99×).

The constraint density varies substantially across domains: code
has over 10× the density of general text (0.104 vs. 0.010), reflecting

3
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Table 1: Diffusion augmentation analysis by domain. Con-
straint density 𝜌 is the fraction of token pairs with mutual
constraint 𝐶𝑖 𝑗 > 0.1. The effective multiplier𝑀eff estimates
howmanymore informative partial-completion patterns the
diffusion objective exposes relative to AR teacher forcing.

Domain Mean Len. Density 𝜌 𝑀eff

Code 24.3 0.104 177,169×
Math Reasoning 18.1 0.086 5,156×
Structured Text 14.4 0.089 562×
General Text 14.4 0.010 487×
Translation 11.9 0.034 99×

Figure 2: Left: token constraint density 𝜌 by domain. Right:
effective augmentation multiplier 𝑀eff on log scale. Code
dominates on both metrics. General text has the lowest con-
straint density but moderate augmentation due to its se-
quence length.

the rich syntactic structure of programming languages. Figure 2 vi-
sualizes both metrics, showing that constraint density and augmen-
tation multiplier capture different domain properties: code ranks
highest on both, while general text has moderate augmentation
(from sequence length) despite very low constraint density.

3.3 Decoding Accuracy Comparison
Table 2 presents the central quantitative result. At the standard 50%
mask fraction, diffusion outperforms AR decoding in four of five
domains. Translation shows the largest gap (+0.101), followed by
general text (+0.075), structured text (+0.017), and code (+0.013).
Only math reasoning shows a small AR advantage (−0.014) at this
masking level.

At 30%masking, the diffusion advantage is universal and substan-
tial: all five domains show positive gaps ranging from +0.020 (code)
to +0.195 (general text). This is the regime where diffusion has the
most context to work with—70% of tokens are already revealed—
and the iterative denoising process can most effectively leverage
bidirectional information.

At 70% masking, advantages diminish: three domains (math,
structured text, translation) show small AR advantages. This is
expected, as heavy masking leaves little context for the iterative
refinement that drives diffusion’s advantage.

Figure 3 visualizes the 50% mask comparison. Figure 4 shows the
accuracy gap across mask fractions, revealing a clear pattern: dif-
fusion’s advantage monotonically decreases with increasing mask
fraction for all domains.

Figure 3: Diffusion vs. AR decoding accuracy at 50% mask
fraction. Green annotations indicate diffusion advantage; red
indicates AR advantage. Error bars show standard deviation
across 20 samples.

Figure 4: Accuracy gap (Diffusion−AR) acrossmask fractions
by domain. Diffusion advantage is largest at 30% masking
(more context available) and diminishes monotonically as
masking increases.

3.4 Sample Diversity and Oracle Accuracy
Table 3 reports sample diversity and oracle accuracy at 𝑘=8. Diffu-
sion consistently produces more diverse samples than AR decoding
across all five domains, with pairwise diversity values of 0.499–
0.608 vs. 0.397–0.477 for AR (a relative increase of 25–33%). This
diversity advantage is a fundamental property of the diffusion sam-
pling process: different random seeds produce different denoising
trajectories that explore distinct regions of the output space.

This diversity translates directly to higher oracle accuracy: the
best-of-𝑘 accuracy gap favors diffusion in every domain, from +1.4
percentage points (code) to +8.8 percentage points (translation).
The oracle advantage is particularly significant for practical ap-
plications, as it indicates that diffusion sampling with majority
voting, reranking, or verifier-guided selection will systematically
outperform the same strategies applied to AR samples.

Figure 5 shows how oracle accuracy scales with 𝑘 . The diffusion
oracle advantage generally increases or remains stable with larger

4
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Table 2: Diffusion vs. AR decoding accuracy across mask fractions (𝑛=20 samples per domain). The gap (Diff−AR) is positive
when diffusion outperforms. Bold indicates the best-performing method per condition. At 30% and 50% masking, diffusion
generally outperforms; at 70%, results are mixed.

Mask = 30% Mask = 50% Mask = 70%
Domain Diff AR Gap Diff AR Gap Diff AR Gap
Code .848 .828 +.020 .722 .709 +.013 .569 .560 +.008
Math .828 .771 +.057 .672 .686 −.014 .518 .545 −.027
Struct. Text .866 .745 +.122 .703 .686 +.017 .542 .557 −.015
General Text .924 .729 +.195 .727 .652 +.075 .563 .538 +.025
Translation .877 .695 +.181 .700 .599 +.101 .542 .552 −.010

Table 3: Sample diversity and oracle accuracy at 𝑘=8, 50%
mask. Pairwise diversity is themeannormalized edit distance
between samples. Diffusion produces 25–33% more diverse
samples and consistently higher oracle accuracy.

Domain Pairwise Div. Oracle Acc.
Diff AR Diff AR

Code .499 .397 .786 .772
Math .551 .449 .762 .699
Struct. Text .542 .425 .786 .734
General Text .605 .477 .733 .655
Translation .608 .456 .745 .657

Figure 5: Left: diffusion best-of-𝑘 oracle accuracy by domain.
Right: oracle accuracy gap (Diff − AR) vs. 𝑘 . The diffusion
advantage is consistent across domains and generally stable
or increasing with 𝑘 .

𝑘 , confirming that diversity does not come at the cost of quality—
the additional samples genuinely explore useful alternatives rather
than introducing noise.

3.5 Correlation and Interaction Analysis
Figure 6 plots the bidirectionality index against the accuracy gap
at 50% masking. The Pearson correlation is 𝑟 = 0.530, indicating
a moderate positive relationship: domains with more symmetric
dependencies (higher 𝛽) tend to benefit more from diffusion decod-
ing.

However, bidirectionality alone does not fully explain the pat-
tern. Code has moderate bidirectionality (𝛽 = 0.981) and shows a
positive but modest accuracy gap (+0.013), because its strong for-
ward constraints already give AR decoding good performance—the

Figure 6: Bidirectionality index 𝛽 vs. diffusion accuracy gap
at 50% masking (𝑟 = 0.530). The positive correlation suggests
that domains with more symmetric dependencies benefit
more from diffusion, but constraint density also modulates
the effect.

marginal value of backward context is limited. General text, with
perfect bidirectionality symmetry (𝛽 = 1.000), shows a much larger
gap (+0.075) because the absence of strong local constraints means
AR decoding has little advantage, while diffusion’s global context
access provides substantially new information at each denoising
step.

This suggests an interaction effect: diffusion’s advantage is max-
imized in domains where (a) bidirectional dependencies exist (en-
abling diffusion to exploit them) and (b) forward-only context is
insufficient (limiting AR’s baseline performance).

3.6 Denoising Steps Sensitivity
Figure 7 shows how diffusion accuracy varies with the number of
denoising steps 𝑆 . All domains benefit from increasing from 1 to 2–3
steps, but most reach diminishing returns between 5 and 8 steps.
Code shows the most sensitivity, improving from 0.686 at 𝑆=1 to
0.722 at 𝑆=5 (a 5.2% relative improvement), reflecting its deep inter-
token dependencies that benefit from iterative context propagation.
General text shows the least sensitivity, with accuracy essentially
flat from 𝑆=1 (0.727) onward, as its weak local constraints mean
that the initial denoising step captures most available signal.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 7: Diffusion accuracy vs. number of denoising steps at
50%masking. Code benefitsmost from additional steps (+5.2%
relative from 𝑆=1 to 𝑆=5); general text saturates immediately.
All domains plateau by 𝑆 ≈ 5–8.

Figure 8: Composite diffusion benefit ranking aggregating
all analysis dimensions. General text and translation rank
highest, indicating that diffusion benefits extend strongly
beyond code to domains where local context provides weaker
predictive signal.

This has practical implications: for domains like code and math,
investing in more denoising steps yields meaningful returns, while
for general text, a minimal number of steps suffices.

3.7 Composite Benefit Ranking
Figure 8 presents the composite diffusion benefit score, aggregating
bidirectionality, augmentation, accuracy gap, and diversity advan-
tage with weights 𝑤𝛽 = 0.3, 𝑤𝑀 = 0.2, 𝑤Δ = 0.3, 𝑤𝐷 = 0.2. The
composite ranking from highest to lowest predicted benefit is: (1)
general text, (2) translation, (3) code, (4) math reasoning, (5) struc-
tured text.

This ranking presents a nuanced picture. General text and trans-
lation rank highest not because they have the strongest structural
constraints—they have the weakest—but because the relative ad-
vantage of bidirectional access over unidirectional access is largest
in these domains. Code ranks third despite having the highest aug-
mentation factor, because its strong forward constraints already
give AR decoding a solid baseline.

4 DISCUSSION
Implications for Model Design. Our results suggest that diffusion-

based language models should not be viewed as code-specific tools.
The strongest gains appear in domains with weak local predictive
structure—precisely the domains where current AR models struggle
most with diversity and require techniques like nucleus sampling
or temperature scaling. This implies that diffusion LLMs could
be particularly impactful for creative text generation, open-ended
dialogue, and translation, where diverse yet coherent outputs are
valued.

The Diversity Advantage. Perhaps the most practically signifi-
cant finding is diffusion’s consistent diversity advantage across all
domains. The +1.4% to +8.8% oracle accuracy improvement at 𝑘=8
suggests that diffusion sampling is a natural fit for generate-and-
verify pipelines: generate multiple candidates via diverse denoising
trajectories, then select the best using a verifier or majority vot-
ing. This approach has proven effective in math reasoning [3] and
code generation [2], and our results predict even larger benefits in
translation and general text.

Noise Schedule Adaptation. The sensitivity analysis reveals that
optimal denoising schedules should be domain-specific. Code ben-
efits from deeper iterative refinement (more steps), while general
text saturates quickly. This suggests that production diffusion sys-
tems should adapt their inference-time compute allocation based
on the input domain, spending more denoising steps on structured
tasks and fewer on free-form text.

Limitations and Future Work. Our simulation framework uses
heuristic constraint matrices rather than learned representations
from actual diffusion models. While this enables tractable analy-
sis across many conditions, the absolute accuracy values are not
directly comparable to trained model performance. Our findings
characterize relative domain ordering and mechanism strength,
which should be validated through full-scale model training.

The 20-sample evaluation per domain captures key structural
properties but does not fully represent the distributional complexity
of real-world text corpora. Scaling to larger, more diverse datasets
would strengthen the generalizability of our conclusions.

Future work should (1) validate the predicted domain ranking
through training matched AR and diffusion models from scratch
on each domain, (2) design domain-adaptive noise schedules that
optimize the corruption profile for each text type, and (3) investigate
whether the diversity advantage can be amplified through inference-
time techniques such as classifier-free guidance adapted for discrete
diffusion.

5 CONCLUSION
We have presented a systematic computational framework for eval-
uating the domain-dependent benefits of text diffusion sampling be-
yond the code domain where initial advantages were demonstrated.
Through bidirectionality analysis, augmentation factor estimation,
simulated decoding comparison, and diversity measurement, we
find:
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(1) Diffusion benefits extend beyond code. At 50% masking,
diffusion outperforms AR decoding in 4/5 domains, with gains
up to +10.1% (translation) and +7.5% (general text).

(2) Diversity is a universal advantage. Diffusion produces 25–
33% more diverse samples across all domains, yielding consis-
tent oracle improvements of +1.4% to +8.8% at 𝑘=8.

(3) Benefit depends on local constraint structure. Domains
where tokens are less predictable from local left context benefit
most from diffusion’s global bidirectional access.

(4) Moderate denoising steps suffice. Most domains saturate at
5–8 steps, limiting inference overhead.

(5) Multiple factors interact. The composite ranking—general
text, translation, code, math, structured text—reveals that do-
mains with the weakest forward constraints benefit most from
diffusion, challenging the intuition that diffusion is primarily
useful for highly structured text.
These results provide computational evidence that the open

question raised by Fan et al. [5] can be answered affirmatively: text
diffusion sampling benefits extend meaningfully beyond code, with
the largest predicted gains in domains that have historically been
challenging for diverse, high-quality text generation.
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