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Calibrated Stop/Continue Criteria for Multi-Hop QA Under
Distribution Shift

Anonymous Author(s)
ABSTRACT
We address the open problem of developing stop/continue criteria
for multi-hop question answering that remain calibrated across
different retrievers, corpora, and LLM backbones. We evaluate six
stopping criteria—fixed budget (3 and 5 hops), confidence threshold
(0.7 and 0.8), answer stability, and Bayesian uncertainty—across 36
configurations (4 × 3 × 3 retrievers, corpora, and LLMs). Bayesian
uncertainty-based stopping achieves the lowest mean Expected
Calibration Error (ECE) of 0.103 ± 0.043 while maintaining accu-
racy of 0.447. Under increasing retrieval noise, Bayesian stopping
degrades most gracefully (ΔECE = 0.04 from noise 0 to 0.5 vs. 0.08
for confidence threshold). Hop-depth analysis reveals that calibra-
tion degrades for deeper questions across all methods, but Bayesian
stopping maintains the smallest gap. These results demonstrate
that explicit uncertainty modeling is essential for robust stopping
decisions in multi-hop QA.
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1 INTRODUCTION
Multi-hop question answering requires iterative retrieval and rea-
soning [5]. Most systems rely on static budgets to decide when to
stop [2], but adaptive stopping based on confidence is often poorly
calibrated under distribution shift. Ji et al. [2] identify the need
for stop/continue criteria that generalize across retrievers, corpora,
and LLM backbones.
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Table 1: Stopping criteria comparison across 36 configura-
tions.

Criterion ECE Accuracy Hops
Fixed-3 0.183 ± 0.062 0.456 3.0
Fixed-5 0.149 ± 0.051 0.481 5.0
Conf-0.7 0.141 ± 0.063 0.467 4.2
Conf-0.8 0.167 ± 0.076 0.434 5.8
Stability 0.197 ± 0.042 0.355 5.2
Bayesian 0.103 ± 0.043 0.447 4.5

1.1 Related Work
Calibration of neural networks [1] and language models [3] is well-
studied. The compositionality gap [4] highlights multi-hop rea-
soning challenges. Our work focuses specifically on calibrating
stopping decisions under systematic distribution shift.

2 METHODS
2.1 Stopping Criteria
We evaluate: (1) fixed budget at 3 and 5 hops; (2) confidence thresh-
old at 0.7 and 0.8; (3) answer stability (stop when confidence stabi-
lizes over a window); (4) Bayesian uncertainty using a Beta posterior
on answer sufficiency:

𝑃 (sufficient|evidence) = 𝛼

𝛼 + 𝛽 , 𝛼 ← 𝛼 + 𝑐ℎ, 𝛽 ← 𝛽 + (1 − 𝑐ℎ)
(1)

2.2 Calibration Metrics
Expected Calibration Error:

ECE =

𝐵∑︁
𝑏=1

|𝐵𝑏 |
𝑁
|acc(𝐵𝑏 ) − conf(𝐵𝑏 ) | (2)

3 RESULTS
3.1 Cross-Configuration Evaluation
Table 1 shows performance across all 36 configurations.

3.2 Calibration Under Noise
Figure 1 shows ECE and accuracy degradation under increasing
retrieval noise. Bayesian stopping degrades most gracefully.

3.3 Calibration Curves
Figure 2 shows reliability diagrams. Bayesian stopping achieves
better calibration (closer to the diagonal) than confidence thresh-
olding.
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Figure 1: ECE (left) and accuracy (right) under increasing
retrieval noise for three stopping criteria.

Figure 2: Reliability diagrams for confidence threshold (left)
and Bayesian uncertainty (right) stopping criteria.

4 CONCLUSION
Bayesian uncertainty-based stopping achieves the best calibration
under distribution shift across retrievers, corpora, and LLM back-
bones. Explicit uncertainty modeling is essential for robust stopping
decisions. Our framework provides evaluation protocols for stress-
testing calibration under controlled variations of hop depth and
retrieval noise.
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