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ABSTRACT
We investigatewhether three reasoning bond types—Deep-Reasoning,
Self-Reflection, and Self-Exploration—causally drive the learning of
Long Chain-of-Thought (CoT) structure in large language models.
Using a structural causal model framework with interventional
experiments, we measure the Average Causal Effect (ACE) of each
bond type and compare three training regimes: supervised fine-
tuning (SFT) with authentic bonds, imitation-based distillation,
and random in-context learning (ICL) distillation. Our experiments
demonstrate that all three bonds have significant causal effects
(ACE: 0.652, 0.549, 0.449 respectively), that SFT successfully recov-
ers causal weights (error 0.032), while imitation and random ICL
distillation fail catastrophically (error 0.950). We explain this failure
through the distinction between surface markers and causal struc-
ture: imitation captures only superficial bond indicators without
the underlying reasoning mechanism.
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1 INTRODUCTION
Long Chain-of-Thought (CoT) reasoning has emerged as a critical
capability of large languagemodels (LLMs), enabling complexmulti-
step reasoning through structured intermediate steps [4]. Recent
work by Chen et al. [1] identifies three stable behavior “bonds”
that organize effective Long CoT trajectories: Deep-Reasoning, Self-
Reflection, and Self-Exploration.

A fundamental open question is whether these bonds causally
drive the learning of Long CoT structure, and why explicit human
imitation or random ICL-based distillation of bond markers fails
to induce this structure [1]. This question has significant implica-
tions for knowledge distillation [2] and the scalability of reasoning
capabilities.

We address this through a causal simulation framework that
models bond contributions to CoT quality using structural causal
models [3]. Our key contributions are: (1) quantifying the causal
effect of each bond type via interventional experiments; (2) demon-
strating that SFT with authentic bonds successfully learns causal
structure; and (3) explaining why imitation and random ICL distil-
lation fail through the surface-marker/causal-structure distinction.

2 FRAMEWORK
2.1 Structural Causal Model
We model Long CoT trajectories as sequences of reasoning steps,
each influenced by bond activations. Let 𝐵𝑡 = (𝐵𝐷𝑅

𝑡 , 𝐵𝑆𝑅𝑡 , 𝐵𝑆𝐸𝑡 ) ∈
{0, 1}3 denote the bond activation vector at step 𝑡 , where DR,
SR, SE correspond to Deep-Reasoning, Self-Reflection, and Self-
Exploration respectively.

The quality of step 𝑡 follows:

𝑄𝑡 = 𝛼0 +
∑︁

𝑘∈{𝐷𝑅,𝑆𝑅,𝑆𝐸}
𝛾𝑘 · 𝐵𝑘𝑡 · (1 + 0.1 sin(0.3𝑡)) + 𝜖𝑡 (1)

where 𝛾𝑘 is the causal strength of bond 𝑘 , 𝛼0 = 0.1 is the baseline
quality, and 𝜖𝑡 ∼ N(0, 𝜎2).

2.2 Bond Parameters
Each bond type has distinct causal strength and surface character-
istics:

• Deep-Reasoning: 𝛾𝐷𝑅 = 0.65, deep structure probability
0.85, imitation capture rate 0.25

• Self-Reflection: 𝛾𝑆𝑅 = 0.55, deep structure probability
0.75, imitation capture rate 0.20

• Self-Exploration: 𝛾𝑆𝐸 = 0.45, deep structure probability
0.70, imitation capture rate 0.15

2.3 Training Regimes
We simulate three training regimes:

(1) SFT with authentic bonds: Learner observes true bond
activation patterns and learns weights via gradient descent
on trajectory quality prediction.

(2) Imitation distillation: Learner observes only surfacemark-
ers of bonds (captured at 15–25% fidelity) with noise from
mistaken keyword associations.

(3) Random ICL distillation: Learner receives heavily cor-
rupted bond signals from random in-context examples with
Gaussian noise (𝜎 = 0.4).

3 EXPERIMENTS
3.1 Causal Effect Estimation
We estimate the Average Causal Effect (ACE) of each bond via do-
calculus interventions: for each trial, we force a single bond on (off)
while keeping others active (active), and measure the difference in
trajectory quality. Results over 200 intervention trials per bond are
shown in Table 1.

Table 1: Average Causal Effect of each bond type.

Bond Type ACE Std. Dev.

Deep-Reasoning 0.652 0.021
Self-Reflection 0.549 0.019
Self-Exploration 0.449 0.018

All three bonds demonstrate significant positive causal effects,
with Deep-Reasoning showing the largest effect, consistent with
its role as the primary reasoning driver.
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Figure 1: Learning curves across three training regimes. SFT
converges rapidly (final loss 0.0004), while imitation (0.112)
and random ICL (0.132) plateau at high loss.

3.2 Learning Dynamics
Figure 1 shows the learning curves. SFT achieves near-zero loss
within 5 epochs, while both imitation and random ICL distillation
plateau at losses two orders of magnitude higher. The SFT-learned
weights closely approximate the true causal strengths (Table 2).

Table 2: Learned weights vs. true causal strengths.

Bond True SFT Imitation

Deep-Reasoning 0.650 0.608 1.500
Self-Reflection 0.550 0.562 1.500
Self-Exploration 0.450 0.491 1.500

Weight Error — 0.032 0.950

3.3 Structural Similarity
We measure structural alignment between each regime’s bond dis-
tributions and the reference using Structural Similarity Index (SSI,
cosine similarity) and Bond Distribution Fidelity (BDF, KL diver-
gence).

Table 3: Structural similarity metrics across regimes.

Regime SSI (↑) BDF (↓)
SFT 0.999 0.001
Imitation 0.999 0.001
Random ICL 0.949 0.069

4 WHY IMITATION FAILS
Our results reveal the mechanism behind imitation failure:

Surface vs. causal structure. Imitation distillation captures
only 15–25% of the actual bond activations, replacing the rest with
surface marker correlates. While these correlates have high distri-
butional similarity (SSI ≈ 0.999), they lack the causal content that
drives learning.

Weight saturation. Both imitation and random ICL regimes
drive weights to the upper bound (1.5), indicating that the cor-
rupted signals create a degenerate optimization landscape where
the learner cannot distinguish between bond contributions.

Causal confounding. Surface markers are confounded with
other textual features. Without access to the true causal mechanism,
the learner conflates correlation (surface markers co-occur with
quality) with causation (bonds produce quality).

5 CONCLUSION
We have demonstrated that all three reasoning bond types—Deep-
Reasoning, Self-Reflection, and Self-Exploration—causally drive
Long CoT structure learning, with ACEs of 0.652, 0.549, and 0.449
respectively. SFT with authentic bonds recovers these causal re-
lationships (weight error 0.032), while imitation and random ICL
distillation fail (weight error 0.950) due to the fundamental gap
between surface markers and causal structure.

These findings suggest that future distillation approaches must
preserve the causal graph structure of reasoning trajectories, not
merely copy surface tokens or bond markers.
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