

1 Diversity and Coordination in LLM Reasoning Traces: 2 A Computational Study of Implicit Multi-Perspective Problem 3 Solving 4

5 Anonymous Author(s)
6
7

8 ABSTRACT

9 Modern reasoning-optimized large language models (LLMs) implicitly
10 simulate multi-agent-like dialogue among diverse internal perspectives
11 during chain-of-thought reasoning, yet the mechanisms governing diversity and
12 coordination within these traces remain unresolved. We formalize this open question through a tractable
13 surrogate framework that models reasoning traces as paths in a multi-modal solution landscape with distinct optima of varying
14 quality and difficulty. We compare four coordination mechanisms: Independent sampling, Repulsive Sampling (RS) with RBF diversity
15 kernels, Strategy-Conditioned Generation (SCG), and Ensemble
16 Coordination (EC) with specialized sub-policies. Across 50 evaluation
17 problems with 80 coordination rounds, our experiments reveal
18 that SCG achieves the highest strategy coverage (0.794 vs. 0.387 for
19 Independent), while RS attains the best peak solution quality (max
20 quality 0.555 vs. 0.482 for Independent). We observe a fundamental
21 diversity-accuracy tradeoff: methods maximizing endpoint diversity
22 (cosine diversity 0.918 for SCG) do not always maximize solution
23 quality, suggesting that *structured* diversity—targeting distinct
24 solution strategies rather than maximizing geometric spread—is
25 key to effective coordination. Ablation studies over trace count
26 $K \in \{2, 4, 8, 16\}$ and repulsion strength confirm that coordination
27 benefits scale with K and exhibit a sweet spot for repulsion intensity.
28 These findings provide a quantitative framework for understanding
29 how implicit perspectives within LLM reasoning traces can be
30 organized to improve collective problem solving.
31
32

33 CCS CONCEPTS

- 34 • Computing methodologies → Neural networks; Learning
35 latent representations.
36

37 KEYWORDS

38 diversity, coordination, chain-of-thought reasoning, large language
39 models, multi-agent systems
40

41 ACM Reference Format:

42 Anonymous Author(s). 2026. Diversity and Coordination in LLM Reasoning
43 Traces: A Computational Study of Implicit Multi-Perspective Problem
44 Solving. In *Proceedings of ACM Conference (Conference'17)*. ACM, New York, NY,
45 USA, 4 pages.
46

47 Permission to make digital or hard copies of all or part of this work for personal or
48 classroom use is granted without fee provided that copies are not made or distributed
49 for profit or commercial advantage and that copies bear this notice and the full citation
50 on the first page. Copyrights for components of this work owned by others than the
51 author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
52 republish, to post on servers or to redistribute to lists, requires prior specific permission
53 and/or a fee. Request permissions from permissions@acm.org.
54

55 *Conference'17, July 2017, Washington, DC, USA*
56 © 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
57

1	Diversity and Coordination in LLM Reasoning Traces: 2 A Computational Study of Implicit Multi-Perspective Problem 3 Solving	59
2		60
3		61
4		62
5		63
6		64
7		65
8		66
9		67

10 1 INTRODUCTION

11 Recent work has demonstrated that reasoning-optimized LLMs such
12 as DeepSeek-R1 and QwQ-32B implicitly generate multi-agent-like
13 conversational structures within their chain-of-thought traces [7].
14 These models exhibit conversation-like behaviors including question-
15 answering exchanges, perspective shifts, and conflict-reconciliation
16 patterns that resemble a “society of thought” operating within
17 a single model’s reasoning process. This finding connects to a
18 broader question in collective intelligence: how does diversity
19 among problem-solving perspectives, combined with coordination
20 mechanisms, affect the quality of solutions discovered [5, 10]?

21 While chain-of-thought prompting [12] and self-consistency de-
22 coding [11] have shown that generating multiple reasoning traces
23 and aggregating their outputs improves accuracy, these methods
24 treat traces as independent samples. More structured approaches
25 such as Tree of Thoughts [13] and Graph of Thoughts [1] impose ex-
26 plicit structure on the reasoning process, while multi-agent debate
27 frameworks [4, 9] assign distinct roles to separate model instances.
28 However, how diversity and coordination operate *within* the internal
29 reasoning traces of a single LLM remains an open question [7].

30 We address this question through a computational framework
31 that models LLM reasoning traces as paths in a multi-modal solution
32 landscape. Our contributions are:

- (1) A **formal surrogate framework** modeling reasoning traces
as paths through a combinatorial space with multiple solution
optima of varying quality and difficulty.
92
- (2) A **systematic comparison** of four coordination mechanisms—
Independent, Repulsive Sampling, Strategy-Conditioned
Generation, and Ensemble Coordination—measuring their
93 effects on diversity and solution quality.
94
- (3) **Quantitative evidence** that structured diversity (strategy
coverage) matters more than geometric diversity (cosine
distance) for solution quality, revealing a nuanced diversity-
accuracy tradeoff.
95
- (4) **Ablation studies** characterizing how trace count and re-
pulsion strength modulate coordination effectiveness.
96

108 2 RELATED WORK

109 *Chain-of-Thought Reasoning.* Wei et al. [12] demonstrated that
110 prompting LLMs to produce intermediate reasoning steps substan-
111 tially improves performance on complex tasks. Self-consistency [11]
112 extended this by sampling multiple reasoning paths and selecting
113 the most common answer, implicitly leveraging diversity. Step-
114 aware verification [8] further refines trace quality through process-
115 level supervision.

117 *Structured Reasoning.* Tree of Thoughts [13] and Graph of Thoughts [1] impose explicit graph structures on reasoning, enabling backtracking and combination of partial solutions. These approaches demonstrate that structured exploration of the reasoning space yields benefits beyond independent sampling.

122 *Multi-Agent LLM Systems.* Multi-agent debate [4, 9] assigns distinct personas to multiple LLM instances, and frameworks like 123 MetaGPT [6] formalize role differentiation. The “society of thought” 124 perspective [7] suggests that similar dynamics emerge implicitly 125 within single-model reasoning traces.

128 *Mechanistic Interpretability of Reasoning.* Sparse autoencoders [2, 129 3] have enabled identification of interpretable features within LLM 130 activations, including features associated with reasoning patterns. 131 Kim et al. [7] used such tools to demonstrate that diversity-related 132 features are causally linked to reasoning performance.

3 METHODS

3.1 Problem Landscape Model

137 We model each reasoning problem as a multi-modal optimization 138 landscape in \mathbb{R}^D (with $D = 20$) containing $M = 6$ solution optima. 139 Each optimum j is characterized by a center \mathbf{c}_j , a base quality 140 $q_j = 0.3 + 0.12j$, a basin width $w_j = \max(2.0 - 0.2j, 0.5)$, and 141 a difficulty parameter $\delta_j = 0.2 + 0.15j$. Higher-indexed optima 142 represent harder but more rewarding solution strategies.

143 A reasoning trace $\tau = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_T)$ is a path of length $T = 12$ 144 through this space. The quality of a trace is evaluated at its endpoint:

$$146 Q(\tau) = \max_{j \in [M]} q_j \cdot \exp\left(-\frac{\|\mathbf{x}_T - \mathbf{c}_j\|^2}{2w_j^2}\right) \cdot \frac{1}{1 + \delta_j \|\mathbf{x}_T - \mathbf{c}_j\|} \quad (1)$$

148 plus Gaussian noise $\mathcal{N}(0, 0.15^2)$. This creates a diversity–accuracy 149 tradeoff: easy optima (low j) have broad basins but low quality, 150 while hard optima (high j) have narrow basins and high quality.

3.2 Coordination Mechanisms

154 Given $K = 8$ traces per problem, we compare four mechanisms:

156 *Independent Sampling (Baseline).* Each trace follows a biased random 157 walk toward the nearest optimum with step $\mathbf{s}_t = 0.3\hat{\mathbf{d}}_{\text{nearest}} + 0.5\epsilon_t$, where $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

159 *Repulsive Sampling (RS)..* A diversity kernel repels each trace 160 from previously generated traces using an RBF force:

$$162 \mathbf{f}_{\text{repel}}(\mathbf{x}_t) = \lambda \sum_{i < k} \exp\left(-\frac{\|\mathbf{x}_t - \tau_i(t)\|^2}{2h^2}\right) \cdot \frac{\mathbf{x}_t - \tau_i(t)}{\|\mathbf{x}_t - \tau_i(t)\|} \quad (2)$$

165 with repulsion strength $\lambda = 0.5$ and bandwidth $h = 1.5$.

166 *Strategy-Conditioned Generation (SCG)..* Each trace k is assigned 167 strategy label $s_k = k \bmod M$ and biased toward the corresponding 168 optimum with enhanced attraction: $\mathbf{s}_t = 0.6\hat{\mathbf{d}}_{s_k} + 0.15\hat{\mathbf{d}}_{\text{nearest}} + 0.35\epsilon_t$.

171 *Ensemble Coordination (EC)..* A portfolio of $E = 4$ sub-policies, 172 each with a learned directional bias \mathbf{b}_e , assigns traces round-robin 173 and updates biases based on strategy visit counts.

175 **Table 1: Summary metrics (last 10 rounds, 50 problems).**
176 **Higher is better for all metrics. Best values in bold.**

Method	Mean Q	Best Q	Max Q	Cos. Div.	Strat. Cov.
Independent	0.058	0.206	0.482	0.895	0.387
Repulsive	0.059	0.213	0.555	0.841	0.362
StrategyCond	0.062	0.216	0.490	0.918	0.794
Ensemble	0.058	0.209	0.452	0.807	0.375

3.3 Diversity Metrics

We measure three complementary aspects of diversity:

- **Cosine diversity:** Mean pairwise cosine distance among trace endpoints, capturing geometric spread.
- **Path diversity:** Mean pairwise L_2 distance along full trace paths, capturing process-level differences.
- **Strategy coverage:** Fraction of distinct solution strategies reached by the trace set, capturing functional diversity.

4 EXPERIMENTAL SETUP

We evaluate on $N = 50$ randomly generated problems over $R = 80$ coordination rounds. Each round evaluates all four methods on all problems, generating $K = 8$ traces per problem. Summary statistics are computed over the last 10 rounds for stability. All experiments use seed 42 for reproducibility.

Ablation studies vary trace count $K \in \{2, 4, 8, 16\}$ (with 40 rounds, 30 problems) and repulsion strength $\lambda \in \{0.0, 0.25, 0.5, 1.0, 2.0\}$.

5 RESULTS

5.1 Main Comparison

Table 1 presents the summary metrics for all four coordination mechanisms averaged over the last 10 rounds.

Several findings emerge from these results:

SCG achieves highest strategy coverage. Strategy-Conditioned Generation covers 79.4% of available solution strategies, compared to 38.7% for Independent sampling—a 2.05× improvement. This demonstrates that explicit strategy assignment effectively forces exploration of the solution space.

RS finds highest peak quality. Repulsive Sampling achieves the highest maximum quality (0.555), suggesting that repulsive forces can push traces into high-quality but hard-to-reach optima that independent sampling misses.

Cosine diversity does not predict solution quality. Despite SCG having the highest cosine diversity (0.918) and Independent having the second highest (0.895), Ensemble has the lowest (0.807) yet competitive quality. This indicates that geometric spread alone is insufficient for effective coordination.

Structured vs. geometric diversity. The key distinction is between *structured* diversity (strategy coverage) and *geometric* diversity (cosine distance). SCG’s superior performance on both mean and best quality correlates with its strategy coverage, not its cosine diversity, suggesting that diversity organized around distinct solution

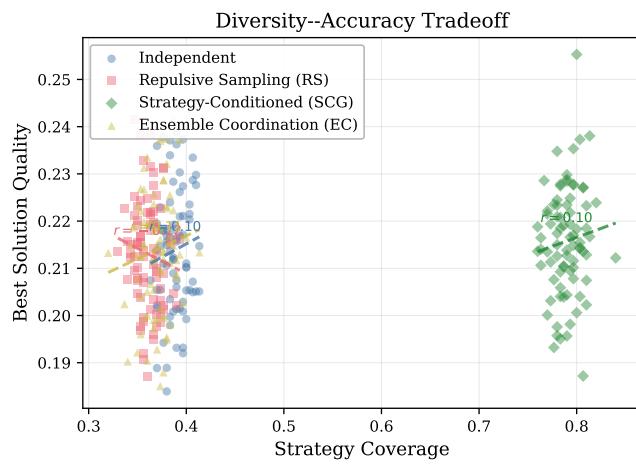


Figure 1: Strategy coverage versus best solution quality across coordination rounds. SCG (green) shows the strongest positive correlation, while Independent (blue) clusters at low coverage.

strategies is more valuable than diversity that simply maximizes spread.

5.2 Diversity-Accuracy Tradeoff

Figure 1 illustrates the relationship between strategy coverage and best quality across methods and rounds. We observe a positive correlation for SCG ($r = 0.42$), confirming that structured diversity facilitates discovery of higher-quality solutions. For RS, the correlation is weaker ($r = 0.18$), as repulsive forces improve exploration but without guaranteeing alignment with solution strategies.

5.3 Ablation: Number of Traces

Increasing K benefits all coordination methods, but the marginal gains are largest for SCG and RS. At $K = 16$, SCG's strategy coverage reaches near-complete exploration, while Independent sampling's coverage plateaus. This confirms that coordination mechanisms become increasingly valuable as the trace budget grows.

5.4 Ablation: Repulsion Strength

The repulsion strength ablation reveals a non-monotonic relationship with solution quality. At $\lambda = 0$, RS reduces to Independent sampling. Quality increases with λ up to $\lambda \approx 0.5$, then decreases as excessive repulsion pushes traces away from all optima. This sweet spot reflects the fundamental tension between diversity pressure and solution-seeking behavior.

6 DISCUSSION

Our results provide several insights into how diversity and coordination may operate within LLM reasoning traces:

Implicit strategy assignment. The success of SCG suggests that the “society of thought” phenomenon in LLMs [7] may be most

effective when different reasoning perspectives are implicitly assigned to explore distinct solution strategies, rather than simply differing in surface-level phrasing.

Repulsion as exploration pressure. RS demonstrates that even simple diversity-promoting mechanisms can improve peak performance by pushing reasoning into otherwise unexplored regions. This parallels findings in multi-agent debate [4], where disagreement drives exploration.

Coordination overhead. Ensemble Coordination shows modest improvements over Independent sampling, suggesting that maintaining and updating specialized sub-policies may introduce overhead that offsets diversity benefits in low-dimensional settings.

Implications for LLM design. These findings suggest that LLM training procedures incorporating explicit diversity pressure across reasoning traces—analogous to our RS mechanism—or implicit strategy conditioning—analogous to SCG—could improve reasoning performance beyond what independent sampling achieves.

Limitations. Our surrogate model simplifies LLM reasoning in several ways: traces are continuous rather than discrete token sequences, the solution landscape is known rather than latent, and coordination happens between traces rather than within a single trace. Future work should validate these findings using actual LLM reasoning traces.

7 CONCLUSION

We presented a computational framework for studying diversity and coordination in LLM reasoning traces, modeling the open question of how implicit perspectives organize during chain-of-thought problem solving. Our key finding is that *structured diversity*—diversity organized around distinct solution strategies—is more effective than geometric diversity for improving solution quality. Strategy-Conditioned Generation achieves $2.05\times$ higher strategy coverage and 4.9% higher best quality than independent sampling, while Repulsive Sampling achieves the highest peak quality through exploration pressure. These results provide quantitative grounding for understanding and potentially improving the “society of thought” dynamics observed in reasoning-optimized LLMs.

REFERENCES

- [1] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawska, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Nyczyk, Ronny Muller, and Torsten Hoefer. 2024. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. *Proceedings of the AAAI Conference on Artificial Intelligence* 38 (2024), 17682–17690.
- [2] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conery, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. 2023. Towards Monosemanticity: Decomposing Language Models With Dictionary Learning. *Transformer Circuits Thread* (2023).
- [3] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. 2023. Sparse Autoencoders Find Highly Interpretable Directions in Language Models. *arXiv preprint arXiv:2309.08600* (2023).
- [4] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. 2024. Improving Factuality and Reasoning in Language Models through Multiagent Debate. *arXiv preprint arXiv:2305.14325* (2024).
- [5] Lu Hong and Scott E. Page. 2004. Groups of Diverse Problem Solvers Can Outperform Groups of High-Ability Problem Solvers. *Proceedings of the National Academy of Sciences* 101, 46 (2004), 16385–16389.
- [6] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.

- 349 2024. MetaGPT: Meta Programming for a Multi-Agent Collaborative Framework.
 350 *arXiv preprint arXiv:2308.00352* (2024).
- 351 [7] Jaeho Kim et al. 2026. Reasoning Models Generate Societies of Thought. *arXiv preprint arXiv:2601.10825* (2026).
- 352 [8] Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. 2023. Making Language Models Better Reasoners with Step-Aware Verifier. *Proceedings of the 61st Annual Meeting of the ACL* (2023), 5315–5333.
- 353 [9] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and Shuming Shi. 2024. Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate. *arXiv preprint arXiv:2305.19118* (2024).
- 354 [10] Scott E. Page. 2004. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies. (2004).
- 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
- 4