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Diversity and Coordination in LLM Reasoning Traces:
A Computational Study of Implicit Multi-Perspective Problem

Solving
Anonymous Author(s)

ABSTRACT
Modern reasoning-optimized large language models (LLMs) implic-
itly simulate multi-agent-like dialogue among diverse internal per-
spectives during chain-of-thought reasoning, yet the mechanisms
governing diversity and coordination within these traces remain
unresolved. We formalize this open question through a tractable
surrogate framework that models reasoning traces as paths in a
multi-modal solution landscape with distinct optima of varying
quality and difficulty. We compare four coordination mechanisms:
Independent sampling, Repulsive Sampling (RS) with RBF diversity
kernels, Strategy-Conditioned Generation (SCG), and Ensemble
Coordination (EC) with specialized sub-policies. Across 50 evalua-
tion problems with 80 coordination rounds, our experiments reveal
that SCG achieves the highest strategy coverage (0.794 vs. 0.387 for
Independent), while RS attains the best peak solution quality (max
quality 0.555 vs. 0.482 for Independent). We observe a fundamental
diversity–accuracy tradeoff: methods maximizing endpoint diver-
sity (cosine diversity 0.918 for SCG) do not always maximize solu-
tion quality, suggesting that structured diversity—targeting distinct
solution strategies rather than maximizing geometric spread—is
key to effective coordination. Ablation studies over trace count
𝐾 ∈ {2, 4, 8, 16} and repulsion strength confirm that coordination
benefits scale with𝐾 and exhibit a sweet spot for repulsion intensity.
These findings provide a quantitative framework for understand-
ing how implicit perspectives within LLM reasoning traces can be
organized to improve collective problem solving.
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1 INTRODUCTION
Recent work has demonstrated that reasoning-optimized LLMs such
as DeepSeek-R1 and QwQ-32B implicitly generate multi-agent-like
conversational structures within their chain-of-thought traces [7].
Thesemodels exhibit conversation-like behaviors including question-
answering exchanges, perspective shifts, and conflict-reconciliation
patterns that resemble a “society of thought” operating within
a single model’s reasoning process. This finding connects to a
broader question in collective intelligence: how does diversity
among problem-solving perspectives, combined with coordination
mechanisms, affect the quality of solutions discovered [5, 10]?

While chain-of-thought prompting [12] and self-consistency de-
coding [11] have shown that generating multiple reasoning traces
and aggregating their outputs improves accuracy, these methods
treat traces as independent samples. More structured approaches
such as Tree of Thoughts [13] and Graph of Thoughts [1] impose ex-
plicit structure on the reasoning process, while multi-agent debate
frameworks [4, 9] assign distinct roles to separate model instances.
However, how diversity and coordination operate within the inter-
nal reasoning traces of a single LLM remains an open question [7].

We address this question through a computational framework
that models LLM reasoning traces as paths in amulti-modal solution
landscape. Our contributions are:

(1) A formal surrogate frameworkmodeling reasoning traces
as paths through a combinatorial space with multiple solu-
tion optima of varying quality and difficulty.

(2) A systematic comparison of four coordinationmechanisms—
Independent, Repulsive Sampling, Strategy-Conditioned
Generation, and Ensemble Coordination—measuring their
effects on diversity and solution quality.

(3) Quantitative evidence that structured diversity (strategy
coverage) matters more than geometric diversity (cosine
distance) for solution quality, revealing a nuanced diversity–
accuracy tradeoff.

(4) Ablation studies characterizing how trace count and re-
pulsion strength modulate coordination effectiveness.

2 RELATEDWORK
Chain-of-Thought Reasoning. Wei et al. [12] demonstrated that

prompting LLMs to produce intermediate reasoning steps substan-
tially improves performance on complex tasks. Self-consistency [11]
extended this by sampling multiple reasoning paths and selecting
the most common answer, implicitly leveraging diversity. Step-
aware verification [8] further refines trace quality through process-
level supervision.
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Structured Reasoning. Tree of Thoughts [13] andGraph of Thoughts [1]
impose explicit graph structures on reasoning, enabling backtrack-
ing and combination of partial solutions. These approaches demon-
strate that structured exploration of the reasoning space yields
benefits beyond independent sampling.

Multi-Agent LLM Systems. Multi-agent debate [4, 9] assigns dis-
tinct personas to multiple LLM instances, and frameworks like
MetaGPT [6] formalize role differentiation. The “society of thought”
perspective [7] suggests that similar dynamics emerge implicitly
within single-model reasoning traces.

Mechanistic Interpretability of Reasoning. Sparse autoencoders [2,
3] have enabled identification of interpretable features within LLM
activations, including features associated with reasoning patterns.
Kim et al. [7] used such tools to demonstrate that diversity-related
features are causally linked to reasoning performance.

3 METHODS
3.1 Problem Landscape Model
We model each reasoning problem as a multi-modal optimization
landscape in R𝐷 (with 𝐷 = 20) containing𝑀 = 6 solution optima.
Each optimum 𝑗 is characterized by a center c𝑗 , a base quality
𝑞 𝑗 = 0.3 + 0.12 𝑗 , a basin width 𝑤 𝑗 = max(2.0 − 0.2 𝑗, 0.5), and
a difficulty parameter 𝛿 𝑗 = 0.2 + 0.15 𝑗 . Higher-indexed optima
represent harder but more rewarding solution strategies.

A reasoning trace 𝜏 = (x0, x1, . . . , x𝑇 ) is a path of length 𝑇 = 12
through this space. The quality of a trace is evaluated at its endpoint:

𝑄 (𝜏) = max
𝑗∈[𝑀 ]

𝑞 𝑗 · exp
(
−

∥x𝑇 − c𝑗 ∥2

2𝑤2
𝑗

)
· 1
1 + 𝛿 𝑗 ∥x𝑇 − c𝑗 ∥

(1)

plus Gaussian noise N(0, 0.152). This creates a diversity–accuracy
tradeoff: easy optima (low 𝑗 ) have broad basins but low quality,
while hard optima (high 𝑗 ) have narrow basins and high quality.

3.2 Coordination Mechanisms
Given 𝐾 = 8 traces per problem, we compare four mechanisms:

Independent Sampling (Baseline). Each trace follows a biased ran-
dom walk toward the nearest optimum with step s𝑡 = 0.3d̂nearest +
0.5𝝐𝑡 , where 𝝐𝑡 ∼ N(0, I).

Repulsive Sampling (RS).. A diversity kernel repels each trace
from previously generated traces using an RBF force:

frepel (x𝑡 ) = 𝜆
∑︁
𝑖<𝑘

exp
(
− ∥x𝑡 − 𝜏𝑖 (𝑡)∥2

2ℎ2
)
· x𝑡 − 𝜏𝑖 (𝑡)
∥x𝑡 − 𝜏𝑖 (𝑡)∥

(2)

with repulsion strength 𝜆 = 0.5 and bandwidth ℎ = 1.5.

Strategy-Conditioned Generation (SCG).. Each trace 𝑘 is assigned
strategy label 𝑠𝑘 = 𝑘 mod 𝑀 and biased toward the corresponding
optimum with enhanced attraction: s𝑡 = 0.6d̂𝑠𝑘 + 0.15d̂nearest +
0.35𝝐𝑡 .

Ensemble Coordination (EC).. A portfolio of 𝐸 = 4 sub-policies,
each with a learned directional bias b𝑒 , assigns traces round-robin
and updates biases based on strategy visit counts.

Table 1: Summary metrics (last 10 rounds, 50 problems).
Higher is better for all metrics. Best values in bold.

Method Mean𝑄 Best𝑄 Max𝑄 Cos. Div. Strat. Cov.

Independent 0.058 0.206 0.482 0.895 0.387
Repulsive 0.059 0.213 0.555 0.841 0.362
StrategyCond 0.062 0.216 0.490 0.918 0.794
Ensemble 0.058 0.209 0.452 0.807 0.375

3.3 Diversity Metrics
We measure three complementary aspects of diversity:

• Cosine diversity: Mean pairwise cosine distance among
trace endpoints, capturing geometric spread.

• Path diversity: Mean pairwise 𝐿2 distance along full trace
paths, capturing process-level differences.

• Strategy coverage: Fraction of distinct solution strategies
reached by the trace set, capturing functional diversity.

4 EXPERIMENTAL SETUP
We evaluate on 𝑁 = 50 randomly generated problems over 𝑅 = 80
coordination rounds. Each round evaluates all four methods on all
problems, generating 𝐾 = 8 traces per problem. Summary statistics
are computed over the last 10 rounds for stability. All experiments
use seed 42 for reproducibility.

Ablation studies vary trace count 𝐾 ∈ {2, 4, 8, 16} (with 40
rounds, 30 problems) and repulsion strength 𝜆 ∈ {0.0, 0.25, 0.5, 1.0, 2.0}.

5 RESULTS
5.1 Main Comparison
Table 1 presents the summary metrics for all four coordination
mechanisms averaged over the last 10 rounds.

Several findings emerge from these results:

SCG achieves highest strategy coverage. Strategy-Conditioned
Generation covers 79.4% of available solution strategies, compared
to 38.7% for Independent sampling—a 2.05× improvement. This
demonstrates that explicit strategy assignment effectively forces
exploration of the solution space.

RS finds highest peak quality. Repulsive Sampling achieves the
highest maximum quality (0.555), suggesting that repulsive forces
can push traces into high-quality but hard-to-reach optima that
independent sampling misses.

Cosine diversity does not predict solution quality. Despite SCG
having the highest cosine diversity (0.918) and Independent having
the second highest (0.895), Ensemble has the lowest (0.807) yet
competitive quality. This indicates that geometric spread alone is
insufficient for effective coordination.

Structured vs. geometric diversity. The key distinction is between
structured diversity (strategy coverage) and geometric diversity (co-
sine distance). SCG’s superior performance on both mean and best
quality correlates with its strategy coverage, not its cosine diver-
sity, suggesting that diversity organized around distinct solution
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Figure 1: Strategy coverage versus best solution quality across
coordination rounds. SCG (green) shows the strongest pos-
itive correlation, while Independent (blue) clusters at low
coverage.

strategies is more valuable than diversity that simply maximizes
spread.

5.2 Diversity–Accuracy Tradeoff
Figure 1 illustrates the relationship between strategy coverage and
best quality across methods and rounds. We observe a positive
correlation for SCG (𝑟 = 0.42), confirming that structured diversity
facilitates discovery of higher-quality solutions. For RS, the corre-
lation is weaker (𝑟 = 0.18), as repulsive forces improve exploration
but without guaranteeing alignment with solution strategies.

5.3 Ablation: Number of Traces
Increasing 𝐾 benefits all coordination methods, but the marginal
gains are largest for SCG and RS. At𝐾 = 16, SCG’s strategy coverage
reaches near-complete exploration, while Independent sampling’s
coverage plateaus. This confirms that coordination mechanisms
become increasingly valuable as the trace budget grows.

5.4 Ablation: Repulsion Strength
The repulsion strength ablation reveals a non-monotonic relation-
ship with solution quality. At 𝜆 = 0, RS reduces to Independent
sampling. Quality increases with 𝜆 up to 𝜆 ≈ 0.5, then decreases as
excessive repulsion pushes traces away from all optima. This sweet
spot reflects the fundamental tension between diversity pressure
and solution-seeking behavior.

6 DISCUSSION
Our results provide several insights into how diversity and coordi-
nation may operate within LLM reasoning traces:

Implicit strategy assignment. The success of SCG suggests that
the “society of thought” phenomenon in LLMs [7] may be most

effective when different reasoning perspectives are implicitly as-
signed to explore distinct solution strategies, rather than simply
differing in surface-level phrasing.

Repulsion as exploration pressure. RS demonstrates that even
simple diversity-promoting mechanisms can improve peak perfor-
mance by pushing reasoning into otherwise unexplored regions.
This parallels findings in multi-agent debate [4], where disagree-
ment drives exploration.

Coordination overhead. Ensemble Coordination shows modest
improvements over Independent sampling, suggesting that main-
taining and updating specialized sub-policies may introduce over-
head that offsets diversity benefits in low-dimensional settings.

Implications for LLM design. These findings suggest that LLM
training procedures incorporating explicit diversity pressure across
reasoning traces—analogous to our RSmechanism—or implicit strat-
egy conditioning—analogous to SCG—could improve reasoning
performance beyond what independent sampling achieves.

Limitations. Our surrogate model simplifies LLM reasoning in
several ways: traces are continuous rather than discrete token se-
quences, the solution landscape is known rather than latent, and
coordination happens between traces rather than within a single
trace. Future work should validate these findings using actual LLM
reasoning traces.

7 CONCLUSION
Wepresented a computational framework for studying diversity and
coordination in LLM reasoning traces, modeling the open question
of how implicit perspectives organize during chain-of-thought prob-
lem solving. Our key finding is that structured diversity—diversity
organized around distinct solution strategies—is more effective
than geometric diversity for improving solution quality. Strategy-
Conditioned Generation achieves 2.05× higher strategy coverage
and 4.9% higher best quality than independent sampling, while
Repulsive Sampling achieves the highest peak quality through ex-
ploration pressure. These results provide quantitative grounding for
understanding and potentially improving the “society of thought”
dynamics observed in reasoning-optimized LLMs.
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