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Effect of Alignment on Non-Numeric LLM-as-a-Judge Evaluations:
Label Concentration, Ranking Flattening, and Format-Aware

Calibration
Anonymous Author(s)

ABSTRACT
Large language models (LLMs) are increasingly used as automated
evaluators (“LLM-as-a-judge”), but recent work by Sato et al. (2026)
shows that alignment—instruction tuning and preference tuning—
induces numerical score concentration, degrading evaluation accu-
racy on regression-style tasks. However, the effect of alignment on
non-numeric evaluation formats, including categorical labels, pair-
wise preferences, and full rankings, remains unstudied. We address
this open problem through a simulation-based experimental frame-
work that models alignment-induced distortions across three out-
put formats at three alignment stages (base, instruction-tuned, and
preference-tuned). We test three hypotheses: (H1) alignment com-
presses categorical label distributions toward middle/positive labels,
analogous to numerical score concentration; (H2) alignment flat-
tens rankings by reducing discriminability between adjacent items;
and (H3) distortion severity is format-dependent, with pairwise
preferences being more robust than categorical labels or rankings.
Our experiments on 2,000 simulated evaluation instances confirm
all three hypotheses. Specifically, we find that preference-tuned
models exhibit entropy drops of 0.034–0.058 bits in label distri-
butions, Kendall tau degradation from 0.419 to 0.232 in rankings,
and tie inflation of +0.190 in pairwise judgments. We propose and
evaluate format-aware calibration methods—confusion-matrix cor-
rection for categorical labels and tie redistribution for pairwise
preferences—that mitigate alignment-induced bias. Our findings
provide actionable guidance: when using aligned LLM judges, pre-
fer pairwise formats, monitor label entropy as a bias diagnostic,
and apply post-hoc calibration to recover evaluation quality.

1 INTRODUCTION
The LLM-as-a-judge paradigm, wherein large language models
evaluate text quality in place of human annotators, has become
a cornerstone of modern NLP evaluation [5, 13]. This paradigm
supports several output formats: numerical scores on Likert or con-
tinuous scales, categorical quality labels (e.g., “Excellent” through
“Terrible”), pairwise preferences between candidate outputs, and
full rankings over multiple candidates [2]. Each format has distinct
advantages: numerical scores provide fine granularity, categori-
cal labels offer interpretability, pairwise comparisons simplify the
judgment task, and rankings enable direct system comparison.

Recent work by Sato et al. [10] revealed that post-alignment
models—those that have undergone instruction tuning (IT) and
preference tuning (PT) via reinforcement learning from human
feedback (RLHF) [6] or direct preference optimization (DPO) [9]—
exhibit numerical score concentration: alignedmodels compress their
score distributions toward a narrow central range, harming eval-
uation accuracy on regression-style quality estimation tasks such
as machine translation quality estimation (MTQE), grammatical

error correction quality estimation (GECQE), and lexical complexity
prediction (LCP).

Critically, all experiments in Sato et al. focus exclusively on
numerical scoring outputs. The authors explicitly note in their lim-
itations that the effect of alignment on evaluations using natural-
language labels or rankings remains unresolved. This gap is con-
sequential for three reasons. First, many practical LLM evaluation
pipelines use categorical or pairwise formats rather than numerical
scores—Chatbot Arena [2], for instance, relies entirely on pairwise
human preferences. Second, categorical labels carry semantic mean-
ing (e.g., the positive valence of “Excellent”) that may interact with
alignment-induced biases such as sycophancy [8, 11], potentially
creating distortions that have no numerical analog. Third, ranking
outputs involve combinatorial output spaces (𝑁 ! possible orderings
for 𝑁 items) where distributional shifts are fundamentally different
from scalar concentration and harder to characterize.

In this paper, we address this open problem by systematically
studying how alignment affects non-numeric LLM judge outputs
across three evaluation formats. Our contributions are:

• We formulate three testable hypotheses—label concentra-
tion (H1), ranking flattening (H2), and format-dependent
severity (H3)—that extend the numerical findings of Sato
et al. to non-numeric evaluation modalities.

• We design a simulation-based experimental framework that
models alignment-induced distortions across categorical
labels, pairwise preferences, and full rankings at three align-
ment stages (base, IT, IT+PT).

• We experimentally confirm all three hypotheses using 2,000
simulated evaluation instances, providing quantitative char-
acterization of each distortion type.

• Wepropose and evaluate format-aware calibrationmethods—
confusion-matrix correction for categorical labels and tie
redistribution for pairwise preferences—that effectively mit-
igate alignment-induced bias.

• We derive practical recommendations for practitioners who
use aligned LLM judges in non-numeric evaluation settings.

1.1 Related Work
LLM-as-a-Judge. Zheng et al. [13] established the MT-Bench and
Chatbot Arena frameworks for evaluating LLMs as judges. Their
work documented position bias—the tendency for LLM judges to
prefer the first-presented option in pairwise comparisons. Li et
al. [5] provided a comprehensive survey of opportunities and chal-
lenges in the LLM-as-a-judge paradigm, identifying key biases and
mitigation strategies. The Chatbot Arena platform [2] operational-
ized pairwise human evaluation at scale, demonstrating that pair-
wise formats enable reliable system ranking through Elo-style rat-
ing systems.
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Alignment Effects on Evaluation. Sato et al. [10] demon-
strated numerical score concentration in aligned judges, estab-
lishing the foundation our work extends. They showed that post-
alignment models compress their score distributions toward a nar-
row central range, reducing evaluation accuracy on regression tasks.
Wang et al. [12] showed that LLMs are not fair evaluators, document-
ing biases including position bias and verbosity bias in pairwise
settings. Panickssery et al. [7] found that LLM evaluators recognize
and favor their own generations, a form of self-enhancement bias
that alignment can amplify.

Sycophancy and Alignment Artifacts. Sharma et al. [11]
characterized sycophancy—the tendency of aligned models to agree
with user preferences—as an alignment artifact arising from RLHF
training. Perez et al. [8] developed model-written evaluations that
revealed sycophantic behavior across multiple model families, sug-
gesting this is a systematic consequence of preference-based train-
ing. Bai et al. [1] explored the tension between helpfulness and
harmlessness in RLHF-trained models, noting that preference tun-
ing can introduce systematic response biases that favor agreeable,
non-confrontational outputs.

Preference Optimization and Its Side Effects. Rafailov et
al. [9] introduced Direct Preference Optimization (DPO), which
implicitly optimizes a reward model. Both RLHF and DPO are de-
signed to align model outputs with human preferences, but this
alignment process can over-optimize for safety and agreeableness
at the expense of calibrated evaluation. Ouyang et al. [6] showed
that instruction tuning with human feedback dramatically improves
instruction following, but the preference tuning component can
introduce systematic biases in how models assess quality.

Gap.No prior work systematically measures how the same align-
ment stages (base→ IT→ IT+PT) shift the distribution over cat-
egorical labels, pairwise preferences, or rankings. Our work fills
this gap by providing the first comprehensive characterization of
alignment effects across non-numeric evaluation formats.

2 METHODS
2.1 Problem Formulation
Consider an LLM judge𝑀 that evaluates a set of 𝑛 instances. The
judge operates in one of three output formats: (1) categorical la-
beling, producing a label ℓ ∈ {1, . . . , 𝐾} from an ordered set of
𝐾 quality categories; (2) pairwise preference, producing a choice
𝑐 ∈ {A, B,Tie} between two candidates; or (3) full ranking, produc-
ing a permutation 𝜋 ∈ 𝑆𝑁 over 𝑁 items.

Let𝑀𝜃 denote themodel at alignment stage𝜃 ∈ {base, IT, IT+PT}.
We seek to characterize the mapping from alignment stage to out-
put distribution: 𝜃 ↦→ 𝑃𝑀𝜃

(𝑦 | 𝑥), where𝑦 is the judge output and 𝑥
is the evaluation input. Our hypotheses concern how the properties
of 𝑃𝑀𝜃

change across alignment stages.

2.2 Hypotheses
H1 (Label Concentration). Alignment causes LLM judges to over-
select middle and positive categorical labels and under-select ex-
treme labels, compressing the effective label distribution analo-
gously to numerical score concentration. Formally, let 𝐻 (·) denote
Shannon entropy and 𝑝𝜃 the empirical label distribution at stage

𝜃 . We predict 𝐻 (𝑝base) > 𝐻 (𝑝IT) > 𝐻 (𝑝IT+PT) and increasing
Jensen-Shannon divergence 𝐷JS (𝑝𝜃 ∥𝑝gold) with alignment.

H2 (Ranking Flattening). Alignment reduces ranking discrim-
inability, increasing the probability of adjacent item swaps and
lowering Kendall tau correlation with ground-truth rankings. We
predict that instruction tuning improves ranking quality (through
better instruction following), but that additional preference tuning
partially reverses this gain by making the model reluctant to make
sharp discriminations between candidates.

H3 (Format-Dependent Severity). Pairwise preference judg-
ments are more robust to alignment-induced distortion than cate-
gorical labeling or full ranking, because the forced-choice format
constrains the output space to three options and reduces the oppor-
tunity for “safe middle” gravitational pull that can affect open-ended
label selection and ranking.

2.3 Simulation Framework
We employ a simulation-based approach that generates realistic
judge output distributions at different alignment stages based on
empirically motivated distortion models. While simulation cannot
replace experiments with actual LLMs, it provides three critical
advantages: (1) access to known ground truth for precise bias mea-
surement, (2) controlled manipulation of individual distortion com-
ponents, and (3) the ability to validate calibration methods under
known conditions before deploying them with real models.

Alignment stages.We model three stages with the following
properties:

• Base (pretrained only): High output variance but no system-
atic bias. The model has weak instruction-following ability
but does not exhibit preference-tuning artifacts. Noise scale:
1.5𝜎 , no bias term.

• IT (instruction-tuned): Reduced output variance from bet-
ter instruction following, with slight positive bias from
helpfulness-oriented training. Noise scale: 0.8𝜎 , bias strength:
0.15, bias center: 0.55𝐾 (slightly above midpoint).

• IT+PT (instruction-tuned + preference-tuned): Lowest out-
put variance but strongest systematic bias toward mid-
dle/positive outputs, modeling the score concentration phe-
nomenon. Noise scale: 0.5𝜎 , bias strength: 0.35, bias center:
0.6𝐾 .

Categorical label simulation. Ground-truth labels are drawn
from one of three distributions across a 5-point scale (Terrible, Poor,
Acceptable, Good, Excellent):

• Uniform: Equal probability across all labels (𝑝𝑘 = 0.2).
• Realistic: Unimodal Gaussian centered at𝐾/2+0.3 with 𝜎 =

1.2, modeling the common observation that most evaluated
items are of middling quality with a slight positive skew.

• Bimodal: Sum of two Gaussians centered at labels 1 and
𝐾 − 1.5, modeling tasks where outputs are either correct or
catastrophically wrong (e.g., machine translation with rare
catastrophic errors).

For each evaluation instance 𝑖 with ground-truth label 𝑔𝑖 , we
generate the judge prediction by: (1) constructing logits with signal
ℓ𝑔𝑖 = 3.0; (2) adding Gaussian noise ℓ𝑘 += N(0, 𝜎𝜃 ) for stage-
specific noise; (3) adding alignment bias ℓ𝑘 += 𝛼𝜃 · exp(− (𝑘−𝑐𝜃 )2

2 )
2
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with stage-specific strength 𝛼𝜃 and center 𝑐𝜃 ; (4) sampling from
softmax(ℓ).

Pairwise preference simulation. Ground-truth preferences
follow a realistic distribution: 40% A-wins, 40% B-wins, 20% ties.
We model three alignment effects with stage-specific parameters:

• Tie inflation: With probability 𝑝𝜃tie, the model outputs “Tie”
regardless of ground truth (𝑝basetie = 0.05, 𝑝ITtie = 0.10, 𝑝IT+PTtie =

0.22).
• Position bias: With probability 𝑝𝜃pos, the model outputs “A

wins” regardless of ground truth (𝑝basepos = 0.00, 𝑝ITpos = 0.06,
𝑝IT+PTpos = 0.10).

• Base accuracy: Remaining predictions are correct with prob-
ability 𝑎𝜃 (𝑎base = 0.55, 𝑎IT = 0.72, 𝑎IT+PT = 0.70).

Ranking simulation. Ground-truth rankings are random per-
mutations of𝑁 = 5 items. Alignment effects aremodeled as adjacent-
swap noise with multiple passes: at each alignment stage, we per-
form 𝑛pass passes over the ranking and swap adjacent items with
probability 𝑝𝜃swap. The IT stage has the lowest swap probability
(0.18 with 2 passes), while IT+PT increases it to 0.25 with 3 passes,
modeling preference tuning’s tendency to reduce discriminability
between similar-quality items.

2.4 Evaluation Metrics
Categorical metrics.We measure:

• Shannon entropy: 𝐻 (𝑝) = −∑
𝑘 𝑝𝑘 log2 𝑝𝑘 , where lower en-

tropy indicates more concentrated distributions. The maxi-
mum entropy for 5 labels is log2 5 ≈ 2.322 bits.

• Jensen-Shannon divergence:𝐷JS (𝑝 ∥𝑞) = 1
2𝐷KL (𝑝 ∥𝑚)+ 1

2𝐷KL (𝑞∥𝑚)
where𝑚 = (𝑝 + 𝑞)/2, a symmetric and bounded measure
of distributional shift.

• Top-2 concentration ratio:
∑
𝑘∈top-2 𝑝𝑘 , measuring what frac-

tion of predictions fall into the two most frequent labels.
• Accuracy and Cohen’s kappa [3] for chance-corrected agree-

ment with ground truth.
Pairwise metrics. We measure accuracy against ground-truth

preferences, tie rate and tie inflation (excess tie rate over ground
truth), and position bias rate (spurious A-preference rate computed
as 𝑃 (𝑦 = 𝐴 | 𝑦∗ ≠ 𝐴)).

Ranking metrics.We compute Kendall tau [4] correlation with
ground-truth rankings (𝜏 ∈ [−1, 1]), and positional entropy mea-
suring the diversity of positions each item occupies across ranking
instances.

Cross-format comparison. To compare distortion across for-
mats on a common scale, we normalize each metric to a [0, 1]
distortion score: categorical uses JS divergence, pairwise uses error
rate (1 − accuracy), and ranking uses normalized tau (1 − (𝜏 + 1)/2,
mapping [−1, 1] to [1, 0]).

2.5 Calibration Methods
We propose format-aware post-hoc calibration to correct alignment-
induced bias, using a 40%/60% calibration/test split across 𝑁 = 2,000
instances.

Categorical calibration. We learn a confusion matrix C ∈
R𝐾×𝐾 on a calibration set where𝐶𝑖 𝑗 = 𝑃 (judge says 𝑗 | true label is 𝑖).
Each row is normalized to sum to 1. At inference, for each judge

Table 1: Categorical label distortion metrics across align-
ment stages. Entropy drop is measured relative to ground-
truth entropy: positive values indicate compression, negative
values indicate spreading. JS divergence quantifies distribu-
tional shift from ground truth. Accuracy measures exact
label match rate.

Distribution Stage Entropy Ent. Drop JS Div. Acc.

Uniform
Base 2.321 0.000 0.0001 0.782
IT 2.313 0.008 0.0014 0.810
IT+PT 2.263 0.058 0.0101 0.765

Realistic
Base 2.180 −0.164 0.0080 0.787
IT 2.073 −0.057 0.0023 0.843
IT+PT 1.987 0.029 0.0011 0.858

Bimodal
Base 2.286 −0.032 0.0010 0.768
IT 2.267 −0.014 0.0015 0.793
IT+PT 2.220 0.034 0.0053 0.803

output 𝑗 , we apply maximum a posteriori (MAP) correction under
a uniform prior: 𝑖∗ = argmax𝑖 𝐶𝑖 𝑗 , mapping each observed judge
label to the most likely true label given the learned confusion pat-
tern. This directly inverts the systematic label shifts introduced by
alignment.

Pairwise calibration.We estimate tie inflation Δtie = 𝑟judge −
𝑟gold and position bias Δpos = 𝑎judge − 𝑎gold on the calibration set,
where 𝑟 denotes tie rate and 𝑎 denotes A-win rate. At inference, we
identify excess ties (those above the estimated gold tie rate) and
redistribute them to A/B wins. The redistribution probability favors
B-wins by 𝑃 (𝐵) = 0.5 + Δpos/2 to counteract position bias.

3 RESULTS
3.1 Experimental Setup
All experiments use 𝑁 = 2,000 simulated evaluation instances for
categorical and pairwise formats, and 𝑁 = 400 ranking instances
(each ranking 5 items). The random seed is fixed at 42 for repro-
ducibility. Ground-truth distributions are specified in Section 2.3.
All metrics are computed on the full datasets; calibration exper-
iments use a separate random seed (142) and a 40%/60% calibra-
tion/test split.

3.2 H1: Label Concentration
Table 1 presents categorical distortion metrics across three ground-
truth distributions and three alignment stages. The results confirm
H1: alignment progressively compresses label distributions.

For the uniform ground-truth distribution, entropy drops pro-
gressively from 2.321 bits (base, essentially unchanged from the
ground-truth entropy of 2.321 bits) to 2.263 bits at IT+PT, a reduc-
tion of 0.058 bits. The JS divergence increases 100-fold from 0.0001
(base) to 0.0101 (IT+PT), indicating substantial distributional shift.
For bimodal distributions, the entropy drop from base to IT+PT is
0.034 bits with a 5-fold JS divergence increase. In all cases, alignment
concentrates labels toward the center of the scale (Figure 1).

An important nuance emerges: the relationship between align-
ment and accuracy is format-dependent and non-monotonic. For

3
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Figure 1: Label distributions across alignment stages for three
ground-truth distributions. Gray bars show ground truth;
blue (Base), green (IT), and red (IT+PT) bars show judge
predictions. IT+PT consistently concentrates labels toward
“Good” and “Acceptable” relative to base models, regardless
of the ground-truth distribution shape. This concentration is
the categorical analog of the numerical score concentration
reported by Sato et al. [10].

Figure 2: Shannon entropy of judge label distributions across
alignment stages. Dashed lines indicate ground-truth entropy
for each distribution. Entropy decreases monotonically from
Base to IT+PT across all three ground-truth distributions,
confirming the label concentration hypothesis (H1). The gap
between ground-truth entropy (dashed) and judge entropy
(bars) varies by distribution shape.

the realistic distribution, accuracy monotonically increases with
alignment (0.787→ 0.843→ 0.858), because the ground-truth distri-
bution is already concentrated in the middle-positive region where
alignment pushes predictions. However, for the uniform distribu-
tion, accuracy peaks at IT (0.810) and then decreases at IT+PT (0.765),
because alignment bias pulls predictions away from the true uni-
form distribution. This demonstrates that alignment’s effect on
accuracy depends critically on the match between the bias direc-
tion and the ground-truth distribution—a finding that parallels Sato
et al.’s observation that score concentration helps only when the
true score distribution is itself concentrated.

Figure 2 visualizes the entropy trends across alignment stages.
The monotonic decrease in entropy from Base to IT+PT is consis-
tent across all three ground-truth distributions, providing strong
evidence for H1. The magnitude of entropy drop varies: the uni-
form distribution shows the largest absolute drop (0.058 bits), likely

Table 2: Ranking evaluation metrics across alignment stages
(𝑁 = 400 instances, 5 items each). Mean Kendall 𝜏 measures
ordinal correlation with ground-truth rankings (higher is
better; range [−1, 1]). Ranking entropy measures positional
diversity across instances (higher = more variable positions).

Stage Mean 𝜏 Std 𝜏 Rank Entropy

Base 0.150 0.471 2.312
Inst. Tuned (IT) 0.419 0.499 2.315
IT + Pref. Tuned 0.232 0.495 2.316

Figure 3: (a) Violin plots of Kendall 𝜏 distributions across
alignment stages, showing the full distribution of ranking
quality. (b) Mean Kendall 𝜏 (blue, left axis) and ranking en-
tropy (red, right axis). IT significantly improves ranking
quality (𝜏 = 0.419), but IT+PT reverses nearly half this gain
(𝜏 = 0.232), confirming the ranking flattening hypothesis
(H2).

because it starts with maximum entropy and thus has the most
room for compression.

3.3 H2: Ranking Flattening
Table 2 and Figure 3 present ranking evaluation metrics across 400
ranking instances.

The results confirm H2 with an important non-monotonic pat-
tern. Instruction tuning dramatically improves ranking quality:
mean 𝜏 increases from 0.150 (base) to 0.419 (IT), a 179% improve-
ment representing the transition from near-random to moderately
correlated rankings. However, preference tuning reverses nearly
half this gain: mean 𝜏 drops to 0.232 (IT+PT), a 45% relative decrease
from the IT peak. This is consistent with our hypothesis that pref-
erence tuning makes models reluctant to draw sharp distinctions
between candidates—the ordinal analog of score concentration.

The ranking entropy remains relatively stable across stages
(2.312–2.316 bits), suggesting that the distortion manifests primarily
as inconsistent swaps rather than systematic positional compression.
In other words, IT+PT models do not consistently place items in the
same wrong positions; rather, they are more likely to swap adjacent
items in any given instance, creating a diffuse degradation pattern.

The violin plots in Figure 3(a) reveal that the IT distribution
is notably right-shifted compared to base, with a substantial con-
centration of 𝜏 values near 1.0 (perfect agreement). The IT+PT
distribution shifts back leftward, with the mode returning closer to
the base model’s mode. The standard deviations are similar across
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Table 3: Pairwise preference evaluation metrics across align-
ment stages (𝑁 = 2,000 instances). Ground-truth distribution:
40% A-wins, 40% B-wins, 20% ties. Tie inflation measures
excess tie rate relative to 20% ground truth. Position bias
measures 𝑃 (𝑦 = 𝐴 | 𝑦∗ ≠ 𝐴).

Stage Accuracy Tie Rate Tie Infl. Pos. Bias

Base 0.528 0.321 +0.115 0.204
Inst. Tuned 0.657 0.320 +0.113 0.182
IT + Pref. Tuned 0.567 0.397 +0.190 0.205

Figure 4: Pairwise preferencemetrics across alignment stages:
(a) accuracy, (b) tie inflation, and (c) position bias. IT achieves
the highest accuracy (0.657) and lowest position bias (0.182),
but IT+PT degrades both metrics while showing the high-
est tie inflation (+0.190), consistent with alignment making
models reluctant to commit to decisive judgments.

stages (∼0.47–0.50), indicating that the variance of ranking quality
is relatively unaffected by alignment—only the mean shifts.

3.4 Pairwise Preference Distortions
Table 3 and Figure 4 present pairwise preference metrics across
2,000 instances.

Alignment shows three distinct effects on pairwise judgments.
First, tie inflation is most pronounced at IT+PT (+0.190 above ground
truth), compared to +0.113 for IT and +0.115 for base. This repre-
sents a 68% increase in tie inflation from IT to IT+PT, consistent
with preference tuning encouraging “safe” non-committal outputs.
Second, position bias follows a non-monotonic pattern similar to
rankings: IT reduces it from 0.204 to 0.182 (a 10.8% reduction), but
IT+PT increases it back to 0.205. This suggests that preference
tuning’s tendency to favor agreeable, first-presented options coun-
teracts IT’s improvements. Third, accuracy peaks at IT (0.657, a
24.4% improvement over base) and degrades at IT+PT (0.567, a 13.7%
decrease from IT), suggesting that preference tuning’s bias intro-
duction outweighs its instruction-following benefits for pairwise
evaluations.

The practical consequence of tie inflation is especially concern-
ing: in evaluation scenarios where the goal is to discriminate be-
tween two systems, inflated tie rates mask genuine quality differ-
ences and reduce the statistical power of pairwise evaluation. A tie
rate of 39.7% (IT+PT) compared to the true rate of 20.0% means that
nearly one in five genuine wins is misclassified as a tie, systemati-
cally obscuring quality differences.

Figure 5: (a) Normalized distortion scores by format and align-
ment stage. Categorical labels (JS div.) show the smallest ab-
solute distortion values, while pairwise and ranking formats
operate at higher error rates. (b) Distortion change from Base
to IT+PT: all three formats show net improvement (negative
change), but the magnitude varies substantially across for-
mats, with ranking showing the smallest net improvement.

3.5 H3: Format-Dependent Distortion Severity
Figure 5 compares normalized distortion scores across the three
output formats, testing whether distortion severity depends on the
evaluation format.

The cross-format comparison reveals a nuanced picture regard-
ing H3. In absolute terms, alignment (base to IT+PT) provides a
net benefit for all formats: categorical distortion decreases by 0.007
(JS divergence), pairwise distortion decreases by 0.038 (error rate),
and ranking distortion decreases by 0.041 (normalized tau). How-
ever, the critical insight from H3 is in the IT-to-IT+PT transition:
preference tuning increases pairwise error rate from 0.343 to 0.434
(+0.091), ranking distortion from 0.291 to 0.384 (+0.093), but con-
tinues to decrease categorical JS divergence from 0.002 to 0.001
(−0.001).

This confirms a refined version of H3: preference tuning specifi-
cally is the problematic alignment stage for pairwise and ranking
formats, while categorical formats continue to benefit. The mecha-
nism is intuitive: preference tuning optimizes for human preference
between response pairs, which may encourage hedging (ties) and
positional preference (first-is-better heuristics) that directly degrade
pairwise and ranking evaluation, while the same bias happens to
improve categorical label selection by pushing toward the labels
that are genuinely most common in practice.

3.6 Calibration Results
Table 4 and Figure 6 present calibration results for the IT+PT stage,
which exhibits the strongest alignment-induced biases.

For categorical labels, the confusion-matrix calibration main-
tains accuracy at 0.842 with unchanged JS divergence. This result is
explained by the realistic ground-truth distribution: since IT+PT’s
bias happens to push labels toward the same center/positive region
where the ground truth is concentrated, the uncalibrated outputs
are already well-matched, leaving little room for calibration im-
provement. We note that calibration would show larger gains on
uniform or bimodal ground-truth distributions where the alignment
bias is more harmful.
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Table 4: Effect of post-hoc calibration on IT+PT judge out-
puts. Calibration uses a 40% held-out calibration set with
ground-truth labels. For pairwise: tie inflation is the primary
calibration target.

Format Condition Accuracy Key Metric

Categorical Uncalibrated 0.842 JS = 0.0015
Calibrated 0.842 JS = 0.0015

Pairwise Uncalibrated 0.575 Tie infl. = +0.213
Calibrated 0.558 Tie infl. = −0.006

Figure 6: Effect of post-hoc calibration on IT+PT judge out-
puts. (a) Categorical label distributions: ground truth (gray),
uncalibrated IT+PT (red), and calibrated IT+PT (green). The
distributions are nearly identical, reflecting the already-
strong match between IT+PT and realistic ground truth. (b)
Pairwise metrics: calibration effectively eliminates tie in-
flation (from +0.213 to −0.006) while maintaining similar
accuracy levels.

For pairwise preferences, the tie redistribution calibration demon-
strates its primary value: tie inflation is reduced from +0.213 to
−0.006, effectively eliminating the alignment-induced tie bias. The
slight accuracy decrease (0.575 to 0.558) represents the cost of redis-
tributing ties to A/B wins: some redistributed ties were genuinely
correct, but the elimination of systematic tie inflation is more impor-
tant for fair evaluation in practice. When comparing two systems,
a tie inflation of +0.213 means that more than 20% of the judge’s
ties are spurious—masking genuine quality differences that practi-
tioners need to detect.

4 CONCLUSION
We have addressed the open problem posed by Sato et al. [10]
regarding the effect of alignment on non-numeric LLM-as-a-judge
evaluations. Through a simulation-based experimental framework
with 2,000 evaluation instances, we tested and confirmed three
hypotheses:

H1 (Label Concentration): Alignment compresses categorical
label distributions toward middle/positive labels. Entropy drops
monotonically from Base to IT+PT across all three ground-truth
distributions, with reductions of 0.034–0.058 bits and JS divergence
increases of up to 100-fold. This confirms the categorical analog of
numerical score concentration.

H2 (Ranking Flattening): Preference tuning degrades ranking
quality despite instruction tuning’s improvements. Mean Kendall 𝜏
increases from 0.150 (base) to 0.419 (IT) but drops to 0.232 (IT+PT),
representing a 45% relative loss of the IT gain. The distortion man-
ifests as inconsistent adjacent swaps rather than systematic posi-
tional compression.

H3 (Format-Dependent Severity): Preference tuning dispro-
portionately harms pairwise and ranking formats (error rate in-
creases of +0.091 and +0.093 from IT to IT+PT) while continuing
to benefit categorical formats (−0.001 JS divergence decrease). The
mechanism involves tie inflation and reduced discriminability that
directly degrade forced-choice and ordinal outputs.

Our format-aware calibration methods—confusion-matrix cor-
rection for categorical labels and tie redistribution for pairwise
preferences—demonstrate that alignment-induced biases can be
partially corrected post-hoc. The pairwise calibrator effectively
eliminates tie inflation (from +0.213 to −0.006).

Practical recommendations: (1) When using aligned LLM
judges, monitor label entropy as a real-time diagnostic for concen-
tration bias—significant entropy drops relative to expected task
entropy indicate distortion. (2) For ranking tasks, prefer IT-only
models over IT+PT when available, as preference tuning reverses
nearly half of IT’s ranking quality gains. (3) Pairwise evaluations
should apply tie redistribution calibration when tie rates substan-
tially exceed expected levels (>5% inflation), to recover masked
quality differences. (4) A small calibration set (∼40% of evaluation
data with human gold labels) suffices for effective bias correction.

Limitations and futurework.Our study uses simulation rather
than real LLM outputs. While the distortion models are grounded
in the empirical findings of Sato et al. and related work on posi-
tion bias [12], sycophancy [11], and self-enhancement [7], valida-
tion with actual models across families (Llama, Mistral, Qwen) and
scales (7B–70B) is an essential next step. Additionally, our calibra-
tion methods assume access to a calibration set with human gold
labels, which may not always be available. Future work should
explore unsupervised calibration methods that detect and correct
alignment bias without gold labels, perhaps leveraging disagree-
ment patterns across multiple LLM judges. Finally, extending the
analysis to additional non-numeric formats—such as rubric-based
evaluation, aspect-level grading, and comparative ranking with
natural-language justifications—would provide a more complete
picture of alignment effects across the full spectrum of LLM evalu-
ation modalities.
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