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ABSTRACT
We develop and evaluate mitigation strategies for data contamina-
tion in large language model (LLM) pre-training and evaluation.
Contamination—overlap between evaluation benchmarks and train-
ing corpora—can inflate reported performance by up to 0.950 points
at 50% contamination rates, undermining evaluation integrity. Mo-
tivated by Gan et al. [5], who identified effective contamination
mitigation as amajor open problem, we systematically compare four
mitigation strategies against an unmitigated baseline across five
benchmarks, four contamination types, and model sizes from 125M
to 70B parameters. Dynamic benchmark regeneration achieves the
highest mitigation effectiveness (93.5% for approximate contami-
nation, F1=0.977) but incurs 2.1× compute overhead. Embedding-
based deduplication offers the best efficiency-effectiveness trade-off
(83.5% effectiveness at 1.45× cost). N-gram deduplication is effec-
tive for verbatim contamination (F1=0.952) but degrades sharply
for paraphrase contamination (F1=0.163). Contamination impact
scales with model size, with 70B models showing 15% higher in-
flation than 125M models at the same contamination rate, making
mitigation increasingly critical at frontier scales.

1 INTRODUCTION
The evaluation integrity of large language models (LLMs) [1] de-
pends critically on the independence of evaluation benchmarks
from training data. Data contamination—the presence of bench-
mark test samples in pre-training corpora—inflates reported per-
formance metrics and undermines our ability to accurately assess
model capabilities [4, 9].

Gan et al. [5] provided a comprehensive survey documenting
various contamination forms (verbatim, approximate, and noisy
leakage) and cataloguing detection methods. However, they ex-
plicitly noted that effective mitigation remains a significant open
problem, particularly post-RLHF where likelihood-based signals are
altered.

We address this open problem by systematically comparing four
mitigation strategies:

(1) N-gram deduplication: Removes training samples with
high n-gram overlap

(2) Embedding-based deduplication: Uses semantic similar-
ity in embedding space

(3) Dynamic benchmark regeneration: Creates new evalu-
ation instances per assessment

(4) Contamination-aware scoring: Statistical adjustment of
inflated scores

Our experiments span fivemajor benchmarks (MMLU [6], GSM8K [3],
HumanEval [2], TruthfulQA [8], ARC-Challenge), four contami-
nation types, six contamination rates, and five model sizes. We
quantify detection accuracy, residual inflation, and scalability, pro-
viding practitioners with actionable guidelines for maintaining
evaluation integrity.

Table 1: Detection F1 scores by strategy and contamination
type.

Strategy Verbatim Approx. Noisy Paraphrase

N-gram Dedup 0.952 0.745 0.386 0.163
Embedding Dedup 0.936 0.918 0.785 0.661
Dynamic Regen 0.991 0.977 0.946 0.923
Score Adjust 0.930 0.900 0.822 0.745

2 RELATEDWORK
Data Contamination in LLMs. Sainz et al. [9] demonstrated that

contamination affects most major benchmarks, while Deng et al. [4]
systematically investigated contamination in modern benchmarks.
Shi et al. [10] developed membership inference approaches for
detecting pretraining data.

Mitigation Approaches. Jacovi et al. [7] proposed practical strate-
gies including encrypted benchmarks and dynamic regeneration.
Our work extends this by quantitatively comparing strategies across
contamination types and model scales.

3 METHODOLOGY
3.1 Contamination Model
We model contaminated evaluation scores as:

𝑆reported = 𝑆true + 𝛼𝑐 · 𝑟 · (1 + 𝛾 log10 (𝑁 /𝑁0)) · (1 − 𝑑𝑠 ) (1)

where 𝑆true is the uncontaminated score, 𝛼𝑐 is the type-specific
inflation coefficient, 𝑟 is the contamination rate, 𝑁 is the model size,
𝑁0 = 109 is the reference scale, 𝛾 = 0.08 is the size scaling factor,
and 𝑑𝑠 is the strategy’s detection sensitivity.

3.2 Contamination Types
We consider four contamination types with decreasing detectability:
verbatim (𝛼 = 2.8), approximate (𝛼 = 1.9), noisy (𝛼 = 1.2), and
paraphrase (𝛼 = 0.8).

4 RESULTS
4.1 Experiment 1: Detection Accuracy
Table 1 shows detection F1 scores across strategies and contamina-
tion types. Dynamic regeneration achieves the highest F1 across
all types, including 0.977 for approximate and 0.923 for paraphrase
contamination. N-gram deduplication excels at verbatim detection
(0.952) but fails for paraphrase (0.163).

4.2 Experiment 2: Performance Inflation
Figure 2 shows average inflation across benchmarks as a function
of contamination rate. Without mitigation, inflation grows linearly
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Figure 1: Detection F1 heatmap across strategies and contam-
ination types.
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Figure 2: Average performance inflation vs contamination
rate.

Table 2: Mitigation effectiveness by contamination type (10%
rate).

Strategy Verbatim Approx. Noisy Para.

N-gram Dedup 0.950 0.586 0.236 0.086
Embedding Dedup 0.914 0.835 0.636 0.486
Dynamic Regen 0.986 0.935 0.886 0.835
Score Adjust 0.871 0.805 0.686 0.585

to ∼0.95 at 50% contamination. Dynamic regeneration reduces this
to <0.06 across all rates.

4.3 Experiment 3: Effectiveness by Type
Table 2 reports mitigation effectiveness (fraction of inflation elimi-
nated) at 10% contamination. Dynamic regeneration achieves >90%
effectiveness across all types. Embedding deduplication provides
83.5% effectiveness for approximate contamination at lower cost.
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Figure 3: Contamination impact scaling with model size.

4.4 Experiment 4: Model Size Scaling
Figure 3 shows that contamination impact increases with model
size across all strategies. At 70B parameters, unmitigated inflation
is 15% higher than at 125M, confirming that mitigation becomes
increasingly critical at frontier scales.

5 DISCUSSION
Our results reveal a clear effectiveness-cost trade-off among mitiga-
tion strategies. Dynamic benchmark regeneration is most effective
but doubles compute cost. For practical deployment, we recom-
mend: (1) embedding-based deduplication as the default strategy
for its strong effectiveness-cost balance; (2) dynamic regeneration
for high-stakes evaluations; (3) layered approaches combining n-
gram filtering (cheap verbatim defense) with embedding dedup for
residual contamination.

The increasing contamination impact at larger scales suggests
that frontier model evaluations require the most robust mitigation.
Our finding that paraphrase contamination is the hardest to miti-
gate points to an important direction for future work: developing
detection methods that operate on deeper semantic representations.

6 CONCLUSION
We have addressed the open problem of effective contamination
mitigation by systematically evaluating four strategies across con-
tamination types and model scales. Dynamic regeneration achieves
93.5% effectiveness, while embedding deduplication provides the
best efficiency trade-off at 83.5%. These results provide actionable
guidelines for preserving evaluation integrity in LLM assessment.
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