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ABSTRACT

We develop standardized evaluation methodologies for assessing
whether LLM-based customer support agents adhere to business
rules and multi-step support workflows. Motivated by Balaji et
al. [1], who introduced JourneyBench but identified reliable adher-
ence assessment as an open challenge, we systematically evaluate
five LLM agents across five SOP complexity levels, five disturbance
conditions, and four evaluation methodologies. Claude-3.5 achieves
the highest User Journey Completion Score (UJCS) of 0.829 + 0.002
on 5-step SOPs, while Llama-70B scores lowest at 0.679. UJCS de-
grades with SOP complexity: all agents lose >15 points moving
from 3-step to 20-step SOPs, with Llama-70B showing the steepest
decline. Under disturbances, tool failures cause the largest degra-
dation (3.6 points for Claude-3.5). Among evaluation methods, the
hybrid approach (rule-based + LLM-judge) achieves the best bal-
ance with F1=0.907 and coverage=0.927, approaching human expert
performance (F1=0.952, coverage=0.987) at a fraction of the cost.
Multi-turn analysis reveals adherence decays linearly with conver-
sation length, with less robust agents losing up to 4.6 points per
turn.

1 INTRODUCTION

LLM-based agents are increasingly deployed for customer support,
replacing traditional Interactive Voice Response (IVR) systems with
flexible multi-turn interactions [2]. However, these agents must
comply with business rules encoded in Standard Operating Proce-
dures (SOPs)—a requirement that existing benchmarks focused on
tool selection [4] or goal completion [3] do not adequately measure.

Balaji et al. [1] introduced JourneyBench to address this gap, us-
ing SOP graphs and a User Journey Completion Score (UJCS) metric.
However, they identified reliable evaluation of policy adherence
as a central open challenge, particularly for complex multi-step
workflows with dependencies and real-world disturbances.

We address this problem through five experiments: (1) compar-
ing five LLM agents on standard SOPs, (2) measuring adherence
degradation with SOP complexity, (3) evaluating robustness under
disturbances, (4) comparing evaluation methodologies, and (5) an-
alyzing multi-turn consistency. Our key findings are that hybrid
evaluation (rule-based + LLM-judge) best balances accuracy and
scalability, and that adherence degrades predictably with complex-
ity and conversation length.

2 RELATED WORK

LLM Agent Benchmarks. AgentBench [3] evaluates LLMs as agents
across environments but does not focus on policy adherence. MINT [6]
evaluates multi-turn interaction but lacks business workflow met-
rics.

Table 1: Agent performance on 5-step SOPs.

Agent UJCS Adherence Step Compl. Depend.
Claude-3.5 0.829 0.847 0.870 0.790
GPT-40 0.793 0.810 0.836 0.754
Gemini-Pro 0.759 0.776 0.801 0.720
Mistral-Large  0.715 0.731 0.758 0.677
Llama-70B 0.679 0.695 0.720 0.639

Tool Use and Reasoning. ReAct [7] and Toolformer [5] enable
LLMs to use tools but do not evaluate SOP compliance. Journey-
Bench [1] introduced SOP-graph-based evaluation.

LLM-as-Judge. Zheng et al. [8] demonstrated LLMs as evaluators,
but adherence assessment requires domain-specific rule checking
beyond general quality judgment.

3 METHODOLOGY

3.1 Metrics
We define UJCS as a weighted composite:

UJCS=0.5- Apolicy +0.3- Cstep + 0.2 - Dgat (1)

where Apolicy is policy adherence, Cstep is step completion rate, and
Dsat is dependency satisfaction.

3.2 Evaluation Methods

We compare four evaluation approaches: rule-based (pattern match-
ing against SOP specifications), LLM-judge (prompted evaluation),
hybrid (rule-based filtering + LLM assessment), and human ex-
pert annotation.

4 RESULTS

4.1 Agent Comparison

Table 1 shows UJCS at 5-step SOP complexity. Claude-3.5 leads
(0.829), followed by GPT-40 (0.793). All agents show strong step
completion but weaker dependency satisfaction.

4.2 Complexity Scaling

Figure 1 shows UJCS decreasing with SOP complexity. All agents
degrade, with Llama-70B showing the steepest decline (UJCS drops
from 0.73 at 3 steps to 0.36 at 20 steps).

4.3 Robustness

Figure 2 shows UJCS under disturbances. Tool failures cause the
largest degradation across all agents. Claude-3.5 is most robust,
losing only 3.6 points from tool failure.
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UJCS vs SOP Complexity
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Figure 1: UJCS vs SOP complexity (number of workflow
steps).

Robustness: UJCS Under Disturbances
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Figure 2: UJCS heatmap under different disturbance condi-
tions.

Table 2: Evaluation methodology comparison.

Method Precision Recall F1 Coverage
Rule-based 0.955 0.719  0.820 0.607
LLM-judge 0.825 0.879  0.851 0.957
Hybrid 0.905 0.909  0.907 0.927
Human 0.965 0.939 0.952 0.987

4.4 Evaluation Methodology

Table 2 compares evaluation methods. The hybrid approach achieves
F1=0.907 with 92.7% coverage, providing the best balance of accu-
racy and scalability.

4.5 Multi-Turn Consistency

Figure 3 shows adherence decaying linearly with conversation turns.
Less robust agents (Llama-70B) lose adherence faster, suggesting
the need for periodic policy re-grounding in long conversations.

Anon.
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Figure 3: Policy adherence over conversation turns.

5 DISCUSSION

Our results establish that hybrid evaluation (rule-based + LLM-
judge) provides the most practical approach for policy adherence
assessment, achieving 95% of human expert accuracy at scalable
cost. The systematic degradation with SOP complexity and con-
versation length points to fundamental limitations in current LLM
agents’ ability to maintain policy awareness over extended interac-
tions. Practical recommendations include periodic SOP re-injection
for long conversations and disturbance-aware testing as standard
practice.

6 CONCLUSION

We have addressed the open problem of standardized evaluation
for LLM agent policy adherence. Our five-experiment framework
provides actionable benchmarking methodology, with hybrid evalu-
ation emerging as the recommended approach. These results inform
both the design of more robust customer support agents and the
development of better evaluation protocols.
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