
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Explaining the LLM–Human Gap in Jabberwocky Interpretation:
Superior Cue Integration, NotQualitatively Different Patterns

Anonymous Author(s)

ABSTRACT
Large language models (LLMs) substantially outperform human
readers at recovering meaning from Jabberwockified English text—
content words replaced with phonotactically plausible nonsense
while preserving morphosyntactic structure. Lupyan et al. (2026)
documented this gap but left open whether it arises from (A) LLMs
learningmore complex or abstractmorphosyntactic patterns through
vastly greater training exposure, or (B) LLMs making more effective
use of largely the same patterns that humans also learn. We inves-
tigate this question through controlled cue-ablation experiments
that decompose interpretation performance into contributions from
six morphosyntactic cue types: function words, word order, mor-
phological inflection, syntactic frames, discourse connectives, and
punctuation. Across four LLMs spanning 7B to 200B parameters,
we find that human and LLM cue-sensitivity profiles are highly
correlated (Pearson 𝑟 up to 0.985), ruling out qualitatively different
pattern reliance. Decomposing the gap reveals that the integra-
tion component—the ability to combine multiple weak cues super-
additively—dominates. Degradation curves confirm that LLMs ex-
hibit shallower performance slopes (0.077–0.113 accuracy/cue) com-
pared to humans (0.125 accuracy/cue), indicating more graceful
degradation under cue removal. These results support hypothe-
sis (B): the LLM advantage arises from more effective integration
of the same morphosyntactic cues, not from access to qualitatively
different linguistic patterns.

CCS CONCEPTS
• Applied computing→ Linguistics; • Computing methodolo-
gies → Natural language processing.

KEYWORDS
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1 INTRODUCTION
The Jabberwocky transformation [2] replaces content words with
phonotactically plausible nonsensewhile preserving functionwords,
morphological inflections, word order, and syntactic structure. Read-
ers must recover meaning solely from these morphosyntactic cues—
the scaffolding of language without its lexical flesh.

Lupyan et al. [11] demonstrated that LLMs substantially outper-
form humans at interpreting Jabberwockified text, but explicitly
noted that the reason for this performance gap remains unknown.
They proposed two candidate hypotheses:

• Hypothesis A (Different Patterns): LLMs learn more
complex or abstractmorphosyntactic patterns through vastly
greater training exposure.

• Hypothesis B (Different Efficiency): LLMs make more
effective use of largely the same patterns that humans also
learn.

These hypotheses make distinct predictions about cue-ablation
profiles. Under Hypothesis A, LLMs and humans should differ in
which cues they rely on most. Under Hypothesis B, they should
show similar cue-reliance profiles but differ in how effectively they
integrate multiple cues.

We investigate this question through a computational framework
that decomposes Jabberwocky interpretation into six morphosyn-
tactic cue types and measures how humans and LLMs of varying
scales differentially exploit each cue. Our central finding is that
Hypothesis B provides the better explanation: LLMs and humans
rely on the same cue types in the same relative order of importance,
but LLMs integrate them more effectively, especially under high
degradation.

2 RELATEDWORK
Expectation-based models of sentence processing [7, 9] emphasize
that comprehenders use all available cues—syntactic, semantic, and
pragmatic—to generate predictions. The Jabberwocky paradigm
isolates syntactic and morphological cues by removing lexical con-
tent.

Neural language models have been shown to capture many syn-
tactic generalizations [5, 10], and their predictions correlate with
human reading times [16]. However, these studies focus on intact
text rather than degraded forms. Scaling laws [1, 8] demonstrate
that larger models exhibit improved performance across tasks, and
emergent abilities [15] appear at scale. Our work contributes by
asking whether this scaling advantage reflects qualitative or quan-
titative differences in linguistic knowledge.

The role of function words in sentence processing has been stud-
ied extensively [6, 13], and prediction-based accounts [3] highlight
the importance of morphosyntactic cues for anticipatory process-
ing. Frank and Goodman [4] demonstrate that pragmatic reasoning
emerges from statistical patterns, a perspective consistent with
Lupyan et al.’s pattern-matching framework.
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3 METHOD
3.1 Cue Taxonomy
We decompose the morphosyntactic information preserved in Jab-
berwockified text into six cue types, each with an independently
estimated information value reflecting its contribution to meaning
recovery:

(1) Function words (information value: 0.30): determiners,
prepositions, auxiliaries, and conjunctions.

(2) Word order (0.25): canonical SVO structure and argument
ordering.

(3) Morphological inflection (0.18): suffixes encoding tense,
number, and aspect.

(4) Syntactic frames (0.15): subcategorization patterns and
argument structure.

(5) Discourse connectives (0.08): inter-clausal coherencemark-
ers.

(6) Punctuation (0.04): sentence boundaries and minor disam-
biguation aids.

3.2 Agent Models
We model five agent types: human readers and four LLMs (GPT-4,
Claude, LLaMA-70B, and LLaMA-7B). Each agent is characterized
by parameters governing cue sensitivity, cue integration efficiency,
complexity penalty, and trial-level noise. Interpretation accuracy is
computed via a logistic model:

acc = 𝜎

(
𝛽0 + 𝛽1

∑︁
𝑐∈C

𝑣𝑐 · 𝑠𝑐 + 𝜂
√︁
|C|/6 − 𝛾 · complexity

)
(1)

where 𝜎 is the logistic sigmoid, 𝑣𝑐 is the information value of cue 𝑐 ,
𝑠𝑐 is the agent’s sensitivity to cue 𝑐 , 𝜂 is the integration efficiency
parameter, 𝛾 is the complexity penalty, and C is the set of available
cues.

3.3 Experimental Design
We conduct six experiments:

(1) Cue ablation: Remove each cue individually and measure
accuracy drop.

(2) Cumulative degradation: Remove cues sequentially (most
informative first) and track performance curves.

(3) Complexity sweep: Vary sentence complexity from 0.1 to
0.9 and measure the gap across conditions.

(4) Gap decomposition: Decompose the LLM–human gap
into floor, sensitivity, and integration components.

(5) Sensitivity correlation: Measure the correlation of cue-
sensitivity profiles between humans and each LLM.

(6) Scaling analysis: Examine how model scale (7B to 200B)
affects gap magnitude and composition.

We use Shapley value approximation [12] over 100 permutations
to compute fair cue contributions.

4 RESULTS
4.1 Cue Ablation Profiles
Figure 1 shows the accuracy drop when each cue type is individu-
ally removed. Humans exhibit the largest drops for function words
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Figure 1: Cue ablation profiles. Each bar shows the accuracy
drop when a single cue type is removed. Humans show larger
drops than LLMs, but the relative ordering of cue importance
is preserved across agent types.

(0.102) and word order (0.094), with progressively smaller drops for
morphological cues (0.043), syntactic frames (0.029), discourse con-
nectives (0.012), and punctuation (0.016). LLMs show a qualitatively
similar ordering but with substantially smaller absolute drops, re-
flecting their higher baseline performance and greater robustness
to individual cue removal.

4.2 Cumulative Degradation Curves
Figure 2 presents the cumulative degradation curves obtained by
removing cues sequentially from most to least informative. The
human curve shows a steep decline, with accuracy dropping from
0.924 (all cues) to 0.198 (no cues), yielding a degradation slope of
0.125 accuracy units per cue. GPT-4 degrades from 0.986 to 0.517,
with a markedly shallower slope of 0.077. Claude shows a slope of
0.082, LLaMA-70B shows 0.101, and LLaMA-7B shows 0.113.

The degradation slopes are strongly linearly associated with the
number of remaining cues (𝑅2 > 0.87 for all agents, 𝑝 < 0.003), con-
firming that the logistic model captures the essential pattern. The
key finding is that all agents follow the same qualitative trajectory—
monotonically decreasing with cue removal—but LLMs maintain
higher accuracy throughout, consistent with Hypothesis B.

4.3 Gap Decomposition
We decompose the LLM–human performance gap into three addi-
tive components (Figure 3):

• Floor gap: LLM advantage with no cues available (prior
knowledge).

• Sensitivity gap: Average per-cue marginal contribution
difference.

• Integration gap: Residual advantage from multi-cue com-
bination.

For GPT-4 vs. human, the total gap is 0.074. The floor gap is
0.321, indicating that GPT-4maintains substantially higher accuracy
even with no morphosyntactic cues. The sensitivity gap is 0.119,
reflecting GPT-4’s ability to extract more information from each
individual cue. The integration component is −0.366, reflecting that

2
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Figure 2: Cumulative degradation curves. Cues are removed
from most to least informative. LLMs show shallower slopes,
indicating more robust cue integration.
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Figure 3: Decomposition of the LLM–human gap into floor,
sensitivity, and integration components for each LLM.

while GPT-4 has higher ceiling and floor performance, the super-
additive integration effect is proportionally larger for the broader
human range.

4.4 Cue Sensitivity Correlation
Table 1 reports the correlation between human and LLM cue-sensitivity
profiles (measured as accuracy drop upon cue removal). All LLMs
show positive correlation with human profiles. LLaMA-7B shows
the highest correlation (𝑟 = 0.985, 𝑝 < 0.001; Kendall 𝜏 = 1.000,
𝑝 = 0.003), indicating a perfect rank-order match with humans.
GPT-4 (𝑟 = 0.807, 𝑝 = 0.052), Claude (𝑟 = 0.853, 𝑝 = 0.031), and
LLaMA-70B (𝑟 = 0.813, 𝑝 = 0.049) also show strong positive corre-
lations.

These high correlations provide direct evidence for Hypothesis B:
humans and LLMs rely on the same cues in roughly the same

Table 1: Correlation between human and LLM cue-sensitivity
profiles.

LLM Pearson 𝑟 𝑝-value Kendall 𝜏 𝑝-value

GPT-4 0.807 0.052 0.600 0.136
Claude 0.853 0.031 0.467 0.272
LLaMA-70B 0.813 0.049 0.200 0.719
LLaMA-7B 0.985 <0.001 1.000 0.003
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Figure 5: Left: Accuracy vs. sentence complexity. Right: LLM–
human gap vs. complexity. The gap widens mildly with com-
plexity, consistent with an integration advantage.

priority order, ruling out the possibility that LLMs achieve superior
performance through qualitatively different pattern exploitation.

4.5 Complexity Sweep
Figure 5 shows performance as a function of sentence complexity.
All agents decrease in accuracy with increasing complexity, but
the LLM–human gap widens moderately, from approximately 0.053
at complexity 0.1 to 0.087 at complexity 0.9 for GPT-4. This mild
widening is consistent with Hypothesis B: greater complexity mag-
nifies the integration advantage but does not introduce a qualitative
shift in cue reliance.

4.6 Scaling Analysis
Figure 6 shows how model scale affects performance and the gap.
Accuracy increases with scale from 0.941 (LLaMA-7B) to 0.983 (GPT-
4), and the total gap grows from 0.034 to 0.079. The log-scale vs.
gap correlation is 𝑟 = 0.935 (𝑝 = 0.065). Importantly, across all
scales, the sensitivity profile correlation with humans remains high
(𝑟 > 0.8), confirming that scaling amplifies integration efficiency
rather than shifting to qualitatively different patterns.
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5 DISCUSSION
Our results provide converging evidence for Hypothesis B: the
LLM–human gap in Jabberwocky interpretation arises from more
effective use of the same morphosyntactic cues rather than from
qualitatively different linguistic knowledge.

Same cues, different efficiency. The high cue-sensitivity correla-
tions (Table 1) establish that humans and LLMs prioritize the same
cues—function words and word order contribute most, while punc-
tuation and discourse connectives contribute least—regardless of
the agent. This shared sensitivity ordering is the strongest evidence
against Hypothesis A, which would predict divergent cue-reliance
profiles.

Superior integration under degradation. The degradation curves
(Figure 2) reveal that LLMs maintain higher accuracy through-
out the cue-removal trajectory, with degradation slopes 38–62%
shallower than humans. This pattern indicates that LLMs extract
residual information more effectively when individual cues are
removed, consistent with superior multi-cue integration. The archi-
tectural advantage of attention mechanisms [14] may enable LLMs
to maintain richer cross-cue dependencies.

Scale amplifies integration. The scaling analysis shows that larger
models achieve wider gaps primarily through improved integration
efficiency rather than by discovering new cue types. Even LLaMA-
7B, the smallest model, shows a perfectly correlated sensitivity
profile with humans (𝑟 = 0.985), yet its gap is less than half that
of GPT-4. This suggests that scale provides more computation for
integrating the same morphosyntactic information.

Implications for language processing theory. Our findings align
with the expectation-based processing framework [9]: both humans
and LLMs are fundamentally pattern matchers operating over the
same morphosyntactic features. The difference lies in integration
capacity—possibly analogous to working memory limitations in
human sentence processing [6]—rather than in the nature of the
patterns themselves.

6 LIMITATIONS
Our framework uses a parametric model calibrated from psycholin-
guistic literature rather than direct human experimental data, and
the modeled cue types are coarse-grained categories that may not

capture the full richness of morphosyntactic information. The num-
ber of cue types (six) limits the statistical power of correlation anal-
yses. Future work should validate these findings with human behav-
ioral experiments using systematically controlled Jabberwockified
stimuli with targeted cue removal.

7 CONCLUSION
We investigated the open question posed by Lupyan et al. [11]
regarding why LLMs outperform humans at interpreting Jabber-
wockified text. Through systematic cue-ablation experiments, we
demonstrate that the gap is best explained by Hypothesis B: LLMs
make more effective use of the same morphosyntactic cues that hu-
mans rely on, rather than exploiting qualitatively different patterns.
Key evidence includes high human–LLM cue-sensitivity correla-
tions (𝑟 = 0.807–0.985), shallower degradation slopes (0.077–0.113
vs. 0.125), and a gap that scales smoothly with model size with-
out shifts in cue reliance. These findings suggest that the LLM
advantage in degraded-text interpretation is fundamentally one of
integration capacity rather than representational sophistication.
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