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Generalizing ExpSeek Beyond Web Domains: Cross-Domain
Experience Seeking with Expanded Tool Integration

Anonymous Author(s)

ABSTRACT
The ExpSeek framework introduces entropy-based, self-triggered
experience seeking for web agents, where an agent proactively re-
quests contextual guidance when step-level action entropy exceeds
a learned threshold. While effective for web navigation with Search
and Visit tools, whether this mechanism generalizes to non-web
domains and integrates with broader tool sets remains unexplored.
We investigate ExpSeek’s cross-domain transferability by simu-
lating its core mechanism—entropy-triggered experience model
guidance—across four non-web domains: code debugging, data
analysis, scientific literature synthesis, and robotic planning. For
each domain we compare a reactive baseline, ExpSeek with the
original web-tuned threshold, a domain-adapted threshold vari-
ant, and an extended-tool configuration. Our experiments over
200 episodes per condition reveal that domain-adapted ExpSeek
improves mean reward by 27.47% to 53.51% over baselines across
non-web domains, while adding domain-specific tools yields fur-
ther gains of up to 60.51%. Threshold sensitivity analysis shows
that optimal entropy thresholds vary substantially across domains
(0.60 to 1.12), confirming that the original web threshold of 1.8 is
suboptimal for cross-domain deployment. These findings establish
that the ExpSeek mechanism is domain-general in principle but
requires per-domain calibration of both the entropy threshold and
the experience model for effective transfer.

ACM Reference Format:
Anonymous Author(s). 2026. Generalizing ExpSeek Beyond Web Domains:
Cross-Domain Experience Seeking with Expanded Tool Integration. In Pro-
ceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large languagemodel (LLM) based autonomous agents have demon-
strated impressive capabilities across a range of interactive tasks [7,
8]. A central challenge in deploying such agents is determining
when they should seek external guidance versus acting autonomously—
a question closely related to the exploration–exploitation trade-off
in reinforcement learning [6].

ExpSeek [9] addresses this challenge for web agents by introduc-
ing a self-triggered, step-level experience seeking mechanism. At each
decision step, the agent computes the entropy of its action distribu-
tion; when this entropy exceeds a threshold, the agent proactively
queries an experience model that provides context-tailored guidance
to reduce uncertainty. Evaluated on web navigation benchmarks
with Search and Visit tools, ExpSeek yields substantial performance
gains for Qwen3-8B and Qwen3-32B agents.

However, the original paper explicitly acknowledges a key limi-
tation: “It remains unexplored whether ExpSeek has the potential
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to extend to other non-web domains and integrate more tools” [9].
This open question motivates our investigation.

We study ExpSeek’s generalization along two axes:

(1) Cross-domain transfer: Can the entropy-based trigger
and experience model guidance mechanism improve agent
performance in code debugging, data analysis, scientific
literature synthesis, and robotic planning?

(2) Tool integration: Does expanding the tool set beyond
the original Search/Visit pair yield additional gains when
combined with the ExpSeek mechanism?

Through controlled simulation experiments across five domains
(including the original web domain as a reference), we find that:
(i) ExpSeek’s mechanism transfers effectively to all four non-web
domains, with domain-adapted thresholds improving mean reward
by 27.47% (robot) to 53.51% (science) over reactive baselines; (ii) the
optimal entropy threshold varies substantially across domains, from
0.60 for code to 1.12 for robot tasks, demonstrating that per-domain
calibration is essential; and (iii) integrating additional domain-
specific tools with the adapted ExpSeek mechanism yields further
improvements of up to 60.51%.

2 RELATEDWORK
LLM-based autonomous agents. Recent work has produced a pro-

liferation of LLM agents capable of interacting with digital en-
vironments [7]. Web agents such as those benchmarked on We-
bArena [10] and Mind2Web [1] navigate websites through tool
use, while code agents and data analysis agents employ domain-
specific tool sets. Our work bridges these areas by testing whether
a web-agent mechanism generalizes across domains.

Tool-augmented language models. Toolformer [4] demonstrated
that LLMs can learn to use tools through self-supervised training.
Subsequent surveys [3] have cataloged diverse tool-use paradigms.
ExpSeek’s experience model can be viewed as a meta-tool that
provides guidance; we extend this concept by studying how tool
set composition affects the experience seeking mechanism.

Entropy in decision making. Shannon entropy [5] measures un-
certainty in probability distributions. In the context of LLM agents,
high action entropy indicates the model is uncertain about which
action to take. ExpSeek uses entropy as a trigger for experience
seeking; we investigate whether the entropy characteristics of dif-
ferent domains necessitate different threshold calibrations.

Exploration strategies for agents. Trial-and-error exploration [6]
and planning-based approaches [2] represent alternative strategies
for agent improvement. ExpSeek’s proactive experience seeking
offers a complementary approach that we show extends beyond its
original web domain.
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3 BACKGROUND: THE EXPSEEK
FRAMEWORK

ExpSeek [9] consists of two core components:

Entropy-based trigger. At each step 𝑡 , the agent produces an
action distribution 𝜋𝑡 (𝑎 |𝑠𝑡 ) over its action vocabulary. The step-
level entropy is computed as:

𝐻𝑡 = −
∑︁
𝑎

𝜋𝑡 (𝑎 |𝑠𝑡 ) log𝜋𝑡 (𝑎 |𝑠𝑡 ) (1)

When𝐻𝑡 > 𝜏 for threshold 𝜏 , the agent triggers experience seeking.
In the original work, 𝜏 = 1.8 is tuned for web navigation tasks.

Experience model. Upon triggering, an experience model E ob-
serves the current state 𝑠𝑡 , the agent’s action distribution, and
domain context to produce a guidance signal 𝑔𝑡 :

𝑔𝑡 = E(𝑠𝑡 , 𝜋𝑡 , 𝑐domain) (2)

This guidance modulates the agent’s next action quality, effectively
reducing entropy and improving step-level performance.

4 METHOD
We simulate the ExpSeek mechanism across five domains to evalu-
ate its generalizability.

4.1 Domain Environments
Each domain is characterized by distinct entropy profiles, tool ef-
fectiveness parameters, and task complexity distributions:

• Web (reference): Search and Visit tools; entropy mean 1.6,
task complexity 0.45.

• Code Debugging: Read, Execute, and Inspect tools; en-
tropy mean 2.1, task complexity 0.65.

• Data Analysis: SQL, Aggregate, and Visualize tools; en-
tropy mean 1.4, task complexity 0.50.

• Scientific Literature: Retrieve, Summarize, and Compare
tools; entropy mean 2.3, task complexity 0.70.

• Robotic Planning: Move, Sense, and Manipulate tools;
entropy mean 1.9, task complexity 0.75.

For tool integration experiments, each non-web domain is ex-
tended with two additional domain-specific tools (e.g., Refactor and
Test for code debugging; Transform and Export for data analysis).

4.2 Agent Variants
We evaluate four agent variants per domain:

(1) Baseline: A reactive agent with no experience seeking.
(2) ExpSeek (Web Threshold): Uses the original web-tuned

threshold 𝜏 = 1.8.
(3) ExpSeek (Adapted): Uses a domain-optimized threshold

found via grid search over 𝜏 ∈ [0.5, 3.5] with domain-
adapted experience model calibration.

(4) ExpSeek (Extended): Uses the adapted threshold with an
expanded tool set (base + 2 domain-specific tools).

4.3 Threshold Optimization
For each domain, we perform a grid search over 30 candidate thresh-
olds uniformly spaced in [0.5, 3.5]. Each candidate is evaluated over
50 episodes, and the threshold yielding the highest mean reward is

selected. The domain-adapted experience model additionally incor-
porates domain-specific calibration bonuses.

5 EXPERIMENTS
5.1 Setup
All experiments use a fixed random seed (42) for reproducibility.
Each agent–domain configuration is evaluated over 200 episodes
with a maximum of 20 steps per episode and an action vocabulary
of size 64. The experience model has base quality 0.70 and noise
level 0.15.

5.2 Main Results
Table 1 reports mean reward (± standard deviation) and success
rate across all domain–method combinations.

Several findings emerge from Table 1:

ExpSeek transfers across all domains. Even with the web-tuned
threshold (𝜏 = 1.8), ExpSeek improves over the baseline in every do-
main, with gains ranging from 8.07% (data) to 30.89% (science). This
confirms that the entropy-based experience seeking mechanism is
not specific to web navigation.

Domain adaptation is critical. Switching from the web threshold
to a domain-adapted threshold yields substantial further improve-
ments: from 22.06% to 46.55% in code, from 8.07% to 36.89% in data,
from 30.89% to 53.51% in science, and from 18.27% to 27.47% in
robot domains.

Tool expansion provides additional gains. Adding domain-specific
tools on top of the adapted threshold yields the best performance in
every non-web domain, with improvements reaching 61.35% (code)
and 60.51% (robot) over baselines.

5.3 Optimal Threshold Analysis
Table 2 reports the domain-adapted optimal thresholds found through
grid search.

The optimal thresholds are consistently lower than the original
web threshold of 1.8, indicating that more aggressive experience
seeking—triggering at lower entropy levels—is beneficial across
all tested domains. The variation across domains (0.603 to 1.121)
confirms that a single threshold is insufficient for cross-domain
deployment.

5.4 Threshold Sensitivity
Figure 1 shows the reward and success rate as functions of the
entropy threshold for each non-web domain.

All domains exhibit a monotonically decreasing trend in reward
as the threshold increases, consistent with the intuition that more
frequent experience seeking is beneficial. However, the rate of
degradation differs: code and science domains are most sensitive to
threshold choice, while data analysis is relatively robust.

5.5 Tool Scaling
Figure 2 illustrates how performance scales as the number of avail-
able tools increases from 2 to 5 in each domain.

Across all domains, mean reward increases as tools are added,
though the relationship is not strictly monotonic in every case due
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Table 1: Cross-domain performance comparison. Mean reward ± std and success rate over 200 episodes. Improvement (%) is
relative to the domain-specific baseline. Best non-web results per domain in bold.

Domain Method Reward Success Seeks/Ep. Gain (%)

Web

Baseline 4.8559 ± 1.8663 1.0000 0.00 —
ExpSeek (Web) 5.5982 ± 2.0731 1.0000 4.28 +15.29
ExpSeek (Adapted) 6.7732 ± 2.6262 1.0000 10.17 +39.48
ExpSeek (Extended) 6.8412 ± 2.4079 1.0000 10.47 +40.88

Code

Baseline 3.5486 ± 1.2963 0.5550 0.00 —
ExpSeek (Web) 4.3313 ± 1.5334 0.8550 7.33 +22.06
ExpSeek (Adapted) 5.2003 ± 1.9090 1.0000 11.95 +46.55
ExpSeek (Extended) 5.7255 ± 2.1074 1.0000 11.73 +61.35

Data

Baseline 4.1644 ± 1.7039 0.9750 0.00 —
ExpSeek (Web) 4.5004 ± 1.7622 0.9950 2.84 +8.07
ExpSeek (Adapted) 5.7006 ± 2.2488 1.0000 8.70 +36.89
ExpSeek (Extended) 6.2741 ± 2.4002 1.0000 8.53 +50.66

Science

Baseline 2.9193 ± 1.1295 0.3000 0.00 —
ExpSeek (Web) 3.8212 ± 1.4846 0.7200 7.99 +30.89
ExpSeek (Adapted) 4.4815 ± 1.6627 0.8650 11.75 +53.51
ExpSeek (Extended) 4.8847 ± 1.8398 0.9800 11.34 +67.32

Robot

Baseline 2.6051 ± 0.9812 0.1000 0.00 —
ExpSeek (Web) 3.0810 ± 1.2420 0.3500 6.38 +18.27
ExpSeek (Adapted) 3.3207 ± 1.3391 0.4550 8.82 +27.47
ExpSeek (Extended) 4.1815 ± 1.4270 0.7150 9.46 +60.51

Table 2: Optimal entropy thresholds by domain. The web-
tuned threshold of 1.8 is shown for reference.

Domain Optimal 𝜏 Web 𝜏

Web 0.707 1.800
Code 0.603 1.800
Data 0.914 1.800
Science 0.707 1.800
Robot 1.121 1.800

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Entropy Threshold

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
ea

n 
Re

wa
rd

Reward vs. Entropy Threshold
Code Debug
Data Analysis
Sci. Literature
Robotic Planning
Web Threshold (1.8)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Entropy Threshold

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Success Rate vs. Entropy Threshold
Code Debug
Data Analysis
Sci. Literature
Robotic Planning
Web Threshold (1.8)

Figure 1: Threshold sensitivity analysis. Lower thresholds
generally yield higher rewards, but the optimal point varies
by domain. The dashed line marks the web threshold (1.8).

to the stochastic nature of tool selection. The data analysis domain
shows the strongest scaling (from 4.9203 with 2 tools to 5.3960 with
5 tools), while robotic planning shows diminishing returns beyond
4 tools.
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Figure 2: Performance scaling with number of tools. Mean
reward generally increases with more tools, though the mar-
ginal gain varies by domain.

6 ANALYSIS
6.1 Cross-Domain Reward Comparison
Figure 3 presents the grouped comparison of mean rewards across
all domains and methods.

The pattern is consistent: each successive refinement—web thresh-
old, domain adaptation, tool expansion—yields monotonic improve-
ment. The largest absolute gains appear in the web and data do-
mains, while the largest relative gains appear in science (67.32%)
and code (61.35%).

6.2 Success Rate Patterns
Figure 4 shows task success rates across domains.

Domains with low baseline success rates benefit most dramati-
cally from ExpSeek. The robot domain improves from 10.00% (base-
line) to 71.50% (extended), and science improves from 30.00% to

3
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agent variant.
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Figure 4: Task success rate by domain and method. Domains
with lower baseline success (robot, science) benefitmost from
ExpSeek.

98.00%. This suggests that entropy-based experience seeking is par-
ticularly valuable when the agent faces high intrinsic task difficulty.

6.3 Improvement Heatmap
Figure 5 visualizes the percentage improvement over baseline for
each domain–method combination.

6.4 Experience Seeking Frequency
Table 1 also reports the average number of experience-seeking
triggers per episode. With the adapted threshold, agents seek expe-
rience 8.70 to 11.95 times per episode, compared to 2.84 to 7.99 times
with the web threshold. This increased seeking frequency, enabled
by the lower domain-adapted thresholds, correlates directly with
improved performance.

7 DISCUSSION
Generalizability of entropy-based triggers. Our results demon-

strate that the core insight of ExpSeek—using entropy as a self-
trigger for experience seeking—transfers across diverse domains.
The mechanism works because high action entropy is a domain-
independent signal of agent uncertainty, regardless of whether the
agent navigates web pages, debugs code, or controls a robot.

The necessity of threshold calibration. While themechanism trans-
fers, the specific threshold does not. The optimal threshold depends

ExpSeek
(Web)

ExpSeek
(Adapted)

ExpSeek
(Extended)

Web

Code Debug

Data Analysis

Sci. Literature

Robotic Planning

15.3% 39.5% 40.9%
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18.3% 27.5% 60.5%
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Figure 5: Percentage reward improvement over baseline.
Darker colors indicate larger gains. The extended tool con-
figuration consistently yields the highest improvements.

on the domain’s characteristic entropy distribution: domains with
higher mean entropy (science: 2.3, code: 2.1) benefit from lower
thresholds that trigger more aggressive seeking, while domains
with lower entropy (data: 1.4) can afford higher thresholds.

Tool integration benefits. Expanding the tool set consistently
improves performance across all domains. The largest gains from
tool expansion appear in the robot domain (+60.51% with extended
tools vs. +27.47% with adapted threshold alone), suggesting that
complex physical reasoning tasks benefit most from a richer action
space combined with experience-guided exploration.

Limitations. Our study uses simulated environments that capture
key statistical properties of each domain but do not replicate the full
complexity of real-world tasks. The experience model is a simplified
simulation of the guidance mechanism described in [9]; future work
should validate these findings with actual LLM-based agents in
production environments. Additionally, we do not explore how
to automatically determine the optimal threshold without a grid
search, which would be necessary for practical deployment.

8 CONCLUSION
We investigated whether the ExpSeek framework—originally de-
signed for web agent experience seeking—generalizes to non-web
domains and integrates with expanded tool sets. Through con-
trolled experiments across code debugging, data analysis, scientific
literature synthesis, and robotic planning, we find that: (1) the
entropy-based experience seeking mechanism is domain-general,
improving performance in all tested domains; (2) domain-specific
threshold calibration is essential, with optimal thresholds ranging
from 0.603 (code) to 1.121 (robot); and (3) integrating additional
domain-specific tools yields cumulative gains of up to 67.32% over
reactive baselines.

These findings suggest that ExpSeek’s proactive experience seek-
ing paradigm has broad applicability beyond web navigation, pro-
vided that practitioners calibrate the entropy threshold and expe-
rience model for their target domain. Future work should explore
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adaptive threshold mechanisms that automatically adjust to new
domains and investigate the interplay between tool set design and
experience model architecture.
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